Skip to main content

Carbon Biogeochemistry of the Western Arctic: Primary Production, Carbon Export and the Controls on Ocean Acidification

  • Chapter
  • First Online:

Abstract

The Arctic Ocean is an important sink for atmospheric carbon dioxide (CO2) with a recent estimate suggesting that the region accounts for as much as 15 % of the global uptake of CO2. The western Arctic Ocean, in particular is a strong ocean sink for CO2, especially in the Chukchi Sea during the open water season when rates of primary production can reach as high as 150 g C m−2. The Arctic marine carbon cycle, the exchange of CO2 between the ocean and atmosphere, and the fate of carbon fixed by marine phytoplankton appear particularly sensitive to environmental changes, including sea ice loss, warming temperatures, changes in the timing and location of primary production, changes in ocean circulation and freshwater inputs, and even the impacts of ocean acidification. In the near term, further sea ice loss and other environmental changes are expected to cause a limited net increase in primary production in Arctic surface waters. However, recent studies suggest that these enhanced rates of primary production could be short lived or not occur at all, as warming surface waters and increases in freshwater runoff and sea ice melt enhance stratification and limit mixing of nutrient-rich waters into the euphotic zone. Here, we provide a review of the current state of knowledge that exists about the rates of primary production in the western Arctic as well as the fate of organic carbon fixed by primary produces and role that these processes play in ocean acidification in the region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguilar-Islas AM, Hurst MP, Buck KN, Sohst B, Smith GJ, Lohan MC, Bruland KW (2007) Micro- and macronutrients in the southeastern Bering Sea: insight into iron-replete and iron-depleted regimes. Prog Oceanogr 73:99–126

    Google Scholar 

  • Alling V, Sanchez-Garcia L, Porcelli D, Pugach S, Vonk JE, van Dongen B, Mörth C-M, Anderson LG, Sokolov A, Andersson P, Humborg C, Semiletov I, Gustafsson O (2010) Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian Seas. Glob Biogeochem Cycles 24:GB4033. doi:10.1029/2010GB003834

    Google Scholar 

  • Ambrose WG Jr, Tilney LM, Clough PR, Beer L (2001) Role of echinoderms in benthic remineralization in the Chukchi Sea. Mar Biol 139:937–949

    CAS  Google Scholar 

  • Amiel D, Cochran JK (2008) Terrestrial and marine POC fluxes derived from 234Th distributions and δ13C measurements on the Mackenzie Shelf. J Geophys Res 113:C03S06

    Google Scholar 

  • Amon RMW (2004) The role of dissolved organic matter for the organic carbon cycle in the Arctic Ocean. In: Stein RS, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, New York, pp 83–99

    Google Scholar 

  • Andersen T, Carstensen J, Hernandez-García E, Duarte CM (2009) Ecological thresholds and regime shifts: approaches to identification. Trends Ecol Evol 24(1):49–57

    Google Scholar 

  • Anderson LG (2002) DOC in the Arctic Ocean. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic, San Diego, pp 665–683

    Google Scholar 

  • Anderson LG, Kaltin S (2001) Carbon fluxes in the Arctic Ocean—potential impact by climate change. Polar Res 20(2):225–232

    Google Scholar 

  • Anderson LG, Jones EP, Swift JH (2003) Export production in the central Arctic Ocean as evaluated from phosphate deficit. J Geophys Res 108(C6):3199. doi:10.1029/2001JC001057

    Google Scholar 

  • Anderson LG, Jutterström S, Hjalmarsson S, WÃ¥hlström I, Semiletov IP (2009) Out-gassing of CO2 from Siberian Shelf seas by terrestrial organic matter decomposition. Geophys Res Lett 36:L20601. doi:10.1029/2009GL040046

    Google Scholar 

  • Anderson LG, Tanhua T, Björk G, Hjalmarsson S, Jones EP, Jutterström S, Rudels B, Swift JH, WÃ¥hlström I (2010) Arctic Ocean shelf—basin interaction, an active continental shelf CO2 pump and its impact on the degree of calcium carbonate dissolution. Deep-Sea Res I 57:869–879. doi:10.1016/j.dsr.2010.03.012

    CAS  Google Scholar 

  • Anderson LG, Björk G, Jutterström S, Pipko I, Shakhova N, Semiletov IP, WÃ¥hlström I (2011) East Siberian Sea, an Arctic region of very high biogeochemical activity. Biogeosciences 8:1745–1754. doi:10.5194/bg-8-1745-2011

    CAS  Google Scholar 

  • Apollonio S (1959) Hydrobiological measurements on IGY Drifting Station Bravo. EOS Trans AGU 40:316–319

    Google Scholar 

  • Arrigo K, van Dijken G, Pabi S (2008) Impact of shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35:L19603

    Google Scholar 

  • Ashjian CJ, Campbell RG, Welch HE, Butler M, Keuren DV (2003) Annual cycle in abundance, distribution, and size in relation to hydrography of important copepod species in the western Arctic Ocean. Deep-Sea Res I 50:1235–1261

    Google Scholar 

  • Azetsu-Scott K, Clarke A, Falkner K, Hamilton J, Jones EP, Lee C, Petrie B, Prinsenberg S, Starr M, Yeats P (2010) Calcium carbonate saturation states in the waters of the Canadian Arctic Archipelago and the Labrador Sea. J Geophys Res 115:C11021. doi:10.1029/2009JC005917

    Google Scholar 

  • Bates NR, Mathis JT (2009) The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6:2433–2459

    CAS  Google Scholar 

  • Bates NR, Moran SB, Hansell DA, Mathis JT (2006) An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophys Res Lett 33:C10013

    Google Scholar 

  • Bates NR, Mathis JT, Cooper L (2009) The effect of ocean acidification on biologically induced seasonality of carbonate mineral saturation states in the Western Arctic Ocean. J Geophys Res Oceans 114:C11007

    Google Scholar 

  • Bates NR, Mathis JT, Jefferies MA (2010) Air-sea CO2 fluxes on the Bering Sea shelf. Biogeosci Discuss 7:1–44

    Google Scholar 

  • Benner R, Benitez-Nelson B, Kaiser K, Amon RMW (2004) Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys Res Lett 31(5):L05305. doi:10.1029/2003GL019251

    Google Scholar 

  • Benner R, Louchouarn P, Amon RMW (2005) Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic. Glob Biogeochem Cycles 19(2):GB2025

    Google Scholar 

  • Bluhm BA, Gradinger R (2008) Regional variability in food availability for Arctic marine mammals. Ecol Appl 18:S77–S96

    Google Scholar 

  • Buddemeier RW, Keypas JA, Aronson RB (2004) Coral reefs and global climate change: potential contributions of climate change to stresses on coral reef ecosystems. Pew Center on Climate Change, Arlington, VA. Available at http://www.pewclimate.org/global-warming-in-depth/all_reports/coral_reefs/, 44 pp

  • Bussmann I, Kattner G (2000) Distribution of dissolved organic carbon in the central Arctic Ocean: the influence of physical and biological properties. J Mar Syst 27:209–219

    Google Scholar 

  • Byrne RH, Mecking S, Feely RA, Liu Z (2010) Direct observations of basin-wide acidification of the North Pacific Ocean. Geophys Res Lett 37:L02601. doi:10.1029/2009GL040999

    Google Scholar 

  • Cai P, Rutgers Van Der Loeff M, Stimac I, Nöthig E-M, Lepore K, Moran SB (2010a) Low export flux of particulate organic carbon in the central Arctic Ocean as revealed by 234Th/238U disequilibrium. J Geophys Res 115:C10037. doi:10.1029/2009JC005595

    Google Scholar 

  • Cai W-J, Chen L, Chen B, Gao Z, Lee SH, Chen J, Pierrot D, Sullivan K, Wang Y, Hu X, Huang W-J, Zhang Y, Xu S, Murata A, Grebmeier JM, Jones EP, Zhang H (2010b) Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 329:556. doi:10.1126/science.1189338

    CAS  Google Scholar 

  • Caldiera K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425(6956):365

    Google Scholar 

  • Caldiera K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110(C9):C09S04. doi:10.1029/2004JC002671

    Google Scholar 

  • Campbell RG, Sherr EB, Ashjian CJ, Sherr BF, Hill V, Stockwell DA (2009) Mesozooplankton prey preference and grazing impact in the Western Arctic Ocean. Deep-Sea Res II 56:1274–1289

    Google Scholar 

  • Cavalieri DJ, Parkinson CL, Vinnikov KY (2003) 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys Res Lett 30(18):1970

    Google Scholar 

  • Chen M, Huang Y, Cai P, Guo L (2003) Particulate organic carbon export fluxes in the Canada Basin and Bering Sea as derived from 234Th/238U disequilibria. Arctic 56:32–44

    Google Scholar 

  • Chierici M, Fransson A (2009) Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves. Biogeosciences 6:2421–2432. doi:10.5194/bg-6-2421-2009

    CAS  Google Scholar 

  • Choe N, Deibel D (2009) Statolith diameter as an age indicator in the planktonic tunicate Oikopleura vanhoeffeni: variability in age-specific growth patterns in Conception Bay, Newfoundland. J Exp Mar Biol Ecol 375:89–98

    Google Scholar 

  • Clough LM, Renaud PE, Ambrose WG Jr (2005a) Impacts of water depth, sediment pigment concentration, and benthic macrofaunal biomass on sediment oxygen demand in the western Arctic Ocean. Can J Fish Aquat Sci 62:1756–1765

    CAS  Google Scholar 

  • Clough LM, Renaud PE, Ambrose WG Jr (2005b) Sediment oxygen demand, infaunal biomass, and sediment pigment concentration in the western Arctic Ocean. Can J Fish Aquat Sci 62:1756–1765

    CAS  Google Scholar 

  • Coachman LK, Aagaard K, Tripp RB (1975) Bering Strait: the regional physical oceanography. University of Washington Press, Seattle, 172 pp

    Google Scholar 

  • Codispoti LA, Flagg CN, Swift JH (2009) Hydrographic conditions during the 2004 SBI process experiments. Deep-Sea Res II 56:1144–1163

    CAS  Google Scholar 

  • Cooley SR, Doney SC (2009) Anticipating ocean acidification’s economic consequences for commercial fisheries. Environ Res Lett 4:024007. doi:10.1088/1748-9326/4/2/024007

    Google Scholar 

  • Cooley SR, Kite-Powell HL, Doney SC (2009) Ocean acidification’s potential to alter global marine ecosystem services. Oceanography 22(4):172–181

    Google Scholar 

  • Cooper LW, Benner R, McClelland JW, Peterson BJ, Holmes RM, Raymond PA, Hansell DA, Grebmeier JM, Codispoti LA (2005) Linkages among runoff, dissolved organic carbon, and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean. J Geophys Res 110:G02013. doi:10.1029/2005JG000031

    Google Scholar 

  • Cooper LW, McClelland JW, Holmes RM, Raymond PA, Gibson JJ, Guay CK, Peterson BJ (2008) Flow-weighted values of runoff tracers (δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers. Geophys Res Lett 35:L18606. doi:10.1029/2008GL035007

    Google Scholar 

  • Cota GF, Pomeroy LR, Harrison WG, Jones EP, Peters F, Sheldon WM, Weingartner TR (1996) Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: Arctic summer nutrient depletion and heterotrophy. Mar Ecol Prog Ser 135:247–258

    Google Scholar 

  • Cottrell MT, Kirchman DL (2009) Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol 75:4958–4966

    CAS  Google Scholar 

  • Cottrell MT, Malmstrom RR, Hill V, Parker AE, Kirchman DL (2006) The metabolic balance between autotrophy and heterotrophy in the western Arctic Ocean. Deep-Sea Res 53:1831–1844

    Google Scholar 

  • Coyle KO, Pinchuk AI (2002) Climate-related differences in zooplankton density and growth on the inner shelf of the southeastern Bering Sea. Prog Oceanogr 55:177–194

    Google Scholar 

  • Dagg MJ, Vidal J, Whitledge TE, Iverson RL, Goering JJ (1982) The feeding, respiration, and excretion of zooplankton in the Bering Sea during a spring bloom. Deep-Sea Res 29:45–63

    Google Scholar 

  • Danielson S, Aagaard K, Weingartner T, Martin S, Winsor P, Gawarkiewicz G, Quadfasel D (2006) The St. Lawrence polynya and the Bering shelf circulation: new observations and a model comparison. J Geophys Res 111:C09023

    Google Scholar 

  • Darnis G, Barber DG, Fortier L (2008) Sea ice and the onshore-offshore gradient in pre-winter zooplankton assemblages in southeastern Beaufort Sea. J Mar Syst 74:994–1011

    Google Scholar 

  • Deibel D, Daly KL (2007) Zooplankton processes in Arctic and Antarctic polynyas. In: Smith WO Jr, Barber DG (eds) Arctic and Antarctic polynyas. Elsevier, Amsterdam, pp 271–322

    Google Scholar 

  • Deibel D, Saunders PA, Acuna JL, Bochdansky AB, Shiga N, Rivkin RB (2005) The role of appendicularian tunicates in the biogenic carbon cycle of three Arctic polynyas. In: Gorsky G, Youngbluth MJ, Deibel D (eds) Response of marine ecosystems to global change: ecological impact of appendicularians. Gordon and Breach, Paris, pp 327–356

    Google Scholar 

  • Del Giorgio PA, Cole JJ (2000) Bacterial energetics and growth efficiency. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New York, pp 289–325

    Google Scholar 

  • Devol AH, Codispoti LA, Christensen JP (1997) Summer and winter denitrification rates in western Arctic shelf sediments. Cont Shelf Res 17:1029–1050

    Google Scholar 

  • Dittmar T, Kattner G (2003) The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar Chem 83:103–120

    CAS  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    CAS  Google Scholar 

  • Duarte CM, Regaudie-de-Gioux A (2009) Thresholds of gross primary production for the metabolic balance of marine planktonic communities. Limnol Oceanogr 54:1015–1022

    CAS  Google Scholar 

  • Ducklow HW (1999) The bacterial component of the oceanic euphotic zone. FEMS Microbiol Ecol 30:1–10

    CAS  Google Scholar 

  • Ducklow H (2000) Bacterial production and biomass in the oceans. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New York

    Google Scholar 

  • Ducklow H, Carlson C, Church M, Kirchman D, Smith D, Steward G (2001) The seasonal development of the bacterioplankton bloom in the Ross Sea, Antarctica 1994–1997. Deep-Sea Res II 48:4199–4221

    CAS  Google Scholar 

  • Ekwurzel B, Schlosser P, Mortlock RA, Fairbanks RG, Swift JH (2001) River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean. J Geophys Res 106:9075–9092

    CAS  Google Scholar 

  • English TS (1961) Some biological oceanographic observations in the central North Polar Sea Drift Station Alpha, 1957–1958. Research Paper 13. Arctic Institute of North America, 80 pp

    Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    CAS  Google Scholar 

  • Fabry VJ, McClintock JB, Mathis JT, Grebmeier JM (2009) Ocean acidification at high latitudes: the bellwether. Oceanography 22(4):160–171

    Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Keypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682):362–366

    CAS  Google Scholar 

  • Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22(4):36–47

    Google Scholar 

  • Finlay J, Neff J, Zimov S, Davydova A, Davydov S (2006) Snowmelt dominance of DOC in high-latitude watersheds: implications for characterization and flux of river DOC. Geophys Res Lett 33:L10401

    Google Scholar 

  • Forest A, Sampei M, Hattori H, Makabe R, Sasaki H, Fukuchi M, Wassmann P, Fortier L (2007) Particulate organic carbon fluxes on the slope of the Mackenzie Shelf (Beaufort Sea): physical and biological forcing of shelf-basin exchanges. J Mar Syst 68:39–54

    Google Scholar 

  • Garneau M-È, Vincent WF, Terrado R, Lovejoy C (2009) Importance of particle-associated bacterial heterotrophy in a coastal Arctic ecosystem. J Mar Syst 75:185–197

    Google Scholar 

  • Gosselin M, Levasseur M, Wheeler PE, Horner RA, Booth BC (1997) New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res II 44:1623–1644

    CAS  Google Scholar 

  • Grainger EH (1975) A marine ecology study in Frobisher Bay, Arctic Canada. In: Billingsly LW, Cameron TWM (eds) Energy flow—its biological dimensions. A summary of the IBP in Canada, 1964–1974. Canadian Committee for the IBP Royal Society of Canada, Ottawa, pp 261–266

    Google Scholar 

  • Grebmeier GM (2012) Shifting patterns of life in the Pacific Arctic and sub-Arctic Seas. Annu Rev Mar Sci 4:16.1–16.16

    Google Scholar 

  • Grebmeier JM, Barry JP (2007) Benthic processes in polynyas. In: Smith WO Jr, Barber DG (eds) Polynyas: windows to the world, Elsevier oceanography series 74. Elsevier, Amsterdam, pp 363–390

    Google Scholar 

  • Grebmeier JM, Harvey HR (2005) The Western Arctic Shelf–Basin Interactions (SBI) project: an overview. Deep Sea Res II 52:3109–3115

    Google Scholar 

  • Grebmeier JM, McRoy CP (1989) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. III. Benthic food supply and carbon cycling. Mar Ecol Prog Ser 53:79–91

    Google Scholar 

  • Grebmeier JM, Whitledge TE (1996) Arctic system science ocean–atmosphere-ice interactions biological initiative in the Arctic: shelf-basin interactions workshop, ARCSS/OAII Report Number 4. University of Washington, Seattle, 39 pp

    Google Scholar 

  • Grebmeier JM, Cooper LW, Feder HM, Sirenko BI (2006a) Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Prog Oceanogr 71:331–361

    Google Scholar 

  • Grebmeier JM, Overland JE, Moore SE, Farley EV, Carmack E, Cooper LW, Frey KE, Helle JH, McLaughlin F, McNutt SL (2006b) A major ecosystem shift in the Northern Bering Sea. Science 311:1461–1464

    CAS  Google Scholar 

  • Grebmeier JM, Feder HM, McRoy CP (1989) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. Mar Ecol Prog Ser 51:253–268

    Google Scholar 

  • Grebmeier JM, Harvey HR, Stockwell DA (2009) The Western Arctic Shelf–Basin Interactions (SBI) project, volume II: an overview. Deep-Sea Res II 56:1137–1143

    CAS  Google Scholar 

  • Gregg WW, Conkright ME (2002) Decadal changes in global ocean chlorophyll. Geophys Res Lett 29:1730. doi:10.1029/2002GL014689

    Google Scholar 

  • Guéguen C, Guo L, Tanaka N (2005) Distributions and characteristics of colored dissolved organic matter in the Western Arctic Ocean. Cont Shelf Res 25:1195–1207

    Google Scholar 

  • Guo L, Smiletov I, Gustafsson O, Ingri J, Andersson P, Dudarev O, White D (2004) Characterization of Siberian Arctic estuarine sediments: implications for terrestrial organic carbon export. Glob Biogeochem Cycles 18(1):GB1036

    Google Scholar 

  • Guo L, Ping C-L, Macdonald RW (2007) Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophys Res Lett 34:L13603. doi:10.1029/2007GL030689

    Google Scholar 

  • Hameedi MJ (1978) Aspects of water column primary productivity in the Chukchi Sea during summer. Mar Biol 45:37–46

    Google Scholar 

  • Hansell DA, Carlson CA (1998) Net community production of dissolved organic carbon. Glob Biogeochem Cycles 12:443–453

    CAS  Google Scholar 

  • Hansell DA, Goering JJ (1990) Pelagic nitrogen flux in the northern Bering Sea. Cont Shelf Res 10:501–519

    Google Scholar 

  • Hansell DA, Whitledge TE, Goering JJ (1993) Patterns of nitrate utilization and new production over the Bering-Chukchi shelf. Cont Shelf Res 13:601–627

    Google Scholar 

  • Hansell DA, Kadko D, Bates NR (2004) Degradation of terrigenous dissolved organic carbon in the western Arctic Ocean. Science 304(5672):858–861

    CAS  Google Scholar 

  • Hansell DA, Carlson CA, Repeta DJ, Schlitzer R (2009) Dissolved organic matter in the ocean: new insights stimulated by a controversy. Oceanography 22:52–61

    Google Scholar 

  • Harrison WG, Platt T, Irwin B (1982) Primary production and nutrient assimilation by natural phytoplankton populations of the eastern Canadian Arctic. Can J Fish Aquat Sci 39:335–345

    CAS  Google Scholar 

  • Henriksen K, Blackburn TH, Lomstein BA, McRoy CP (1993) Rates of nitrification, distribution of nitrifying bacteria and inorganic N fluxes in northern Bering-Chukchi shelf sediments. Cont Shelf Res 13:629–651

    Google Scholar 

  • Hill V, Cota GF, Stockwell D (2005) Spring and summer phytoplankton communities in the Chukchi and eastern Beaufort seas. Deep-Sea Res II 52:3369–3385

    Google Scholar 

  • Hirche H-J, Kattner G (1993) Egg production and lipid content of Calanus glacialis in spring: indication of a food-dependent and food-independent reproductive mode. Mar Biol 104:615–622

    Google Scholar 

  • Holland MM, Bitz CM, Tremblay B (2006) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33(23):L23503

    Google Scholar 

  • Holland MM, Serreze MC, Stroeve JC (2010) The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Clim Dyn 34(2–3):185–200

    Google Scholar 

  • Holmes RM, McClelland JW, Raymond PA, Frazer BB, Peterson BJ, Stieglitz M (2008) Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophys Res Lett 35:L03402. doi:10.1029/2007GL032837

    Google Scholar 

  • Hopcroft RR, Roff JC, Bouman HA (1998) Zooplankton growth rates: the larvaceans Appendicularia, Fritillaria and Oikopleura in tropical waters. J Plankton Res 20:539–555

    Google Scholar 

  • Hopcroft RR, Bluhm BA, Gradinger RR (2008) Arctic Ocean synthesis: analysis of climate change impacts in the Chukchi and Beaufort Seas with strategies for future research, 2nd edn. North Pacific Research Board, Anchorage

    Google Scholar 

  • Hopcroft RR, Kosobokova KN, Pinchuk AI (2010) Zooplankton community patterns in the Chukchi Sea during summer 2004. Deep-Sea Res II 57:27–39

    Google Scholar 

  • Hopkinson CS Jr, Vallino JJ, Nolin A (2002) Decomposition of dissolved organic matter from the continental margin. Deep-Sea Res II 49:4461–4478

    CAS  Google Scholar 

  • Ikeda T, Kanno Y, Ozaki K, Shinada A (2001) Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar Biol 139:587–596

    Google Scholar 

  • Jutterström S, Anderson LG (2005) The saturation of calcite and aragonite in the Arctic Ocean. Mar Chem 94:101–110

    Google Scholar 

  • Jutterström S, Anderson LG, Bates NR, Bellerby R, Johannessen T, Jones EP, Key RM, Lin X, Olsen A, Omar AM (2010) Arctic Ocean data in CARINA. Earth Syst Sci Data 2:71–78

    Google Scholar 

  • Kadko D, Muench R (2005) Evaluation of shelf-basin interaction in the western Arctic by use of short-lived radium isotopes: the importance of mesoscale processes. Deep-Sea Res II 52:3227–3244

    Google Scholar 

  • Kaltin S, Anderson LG (2005) Uptake of atmospheric carbon dioxide in Arctic shelf seas: evaluation of the relative importance of processes that influence pCO2 in water transported over the Bering-Chukchi Sea shelf. Mar Chem 94(1–4):67–79

    CAS  Google Scholar 

  • Karcher MJ, Oberhuber JM (2002) Pathways and modification of the upper and intermediate waters of the Arctic Ocean. J Geophys Res 107:2.1–2.13

    Google Scholar 

  • Kattner G, Lobbes JM, Fitznar HP, Engbrodt R, Nöthig E-M, Lara RJ (1999) Tracing dissolved organic substances and nutrients from the Lena River through Laptev Sea (Arctic). Mar Chem 65:25–39

    CAS  Google Scholar 

  • Kirchman DL, Elifantz H, Dittel A, Malmstrom RR, Cottrell MT (2007) Standing stocks and activity of archaea and bacteria in the western Arctic Ocean. Limnol Oceanogr 52:495–507

    CAS  Google Scholar 

  • Kirchman DL, Hill V, Cottrell MT, Gradinger R, Malmstrom RR, Parker A (2009a) Standing stocks, production, and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean. Deep Sea Res II 56:1237–1248

    CAS  Google Scholar 

  • Kirchman DL, Moran XAG, Ducklow H (2009b) Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat Rev Microbiol 7:451–459

    CAS  Google Scholar 

  • Korsak MN (1992) Primary production of organic matter. In: Nagel PA (ed) Results of the third joint US-USSR Bering and Chukchi Seas Expedition (BERPAC), summer 1988. U.S. Fish and Wildlife Service, Washington, DC, pp 215–218

    Google Scholar 

  • Kosobokova KN, Hopcroft RR (2010) Diversity and vertical distribution of mesozooplankton in the Arctic’s Canada Basin. Deep-Sea Res II 57:96–110

    Google Scholar 

  • Lalande C, Grebmeier JM, Wassman P, Cooper LW, Flint MV, Sergeeva VM (2007a) Export fluxes of biogenic matter in the presence and absence of seasonal sea ice cover in the Chukchi Sea. Cont Shelf Res 27:2051–2065

    Google Scholar 

  • Lalande C, Lepore K, Cooper LW, Grebmeier JM, Moran SB (2007b) Export fluxes of particulate organic carbon in the Chukchi Sea: a comparative study using 234Th/238U disequilibria and drifting sediment traps. Mar Chem 103:185–196

    CAS  Google Scholar 

  • Lalande C, Moran SB, Wassmann P, Grebmeier JM, Cooper LW (2008) 234Th-derived particulate organic carbon fluxes in the northern Barents Sea with comparison to drifting sediment trap fluxes. J Mar Syst 73:103–113

    Google Scholar 

  • Lalande C, Forest A, Barber DG, Gratton Y, Fortier M (2009) Variability in the annual cycle of vertical particulate organic carbon export on Arctic shelves: contrasting the Laptev Sea, Northern Baffin Bay, and the Beaufort Sea. Cont Shelf Res 29:2157–2165

    Google Scholar 

  • Lane PVZ, Llinás L, Smith SL, Pilz D (2008) Zooplankton distribution in the western Arctic during summer 2002: hydrographic habitats and implications for food chain dynamics. J Mar Res 70:97–133

    Google Scholar 

  • Lee SH, Whitledge TE (2005) Primary production in the deep Canada Basin during summer 2002. Polar Biol 28:190–197

    Google Scholar 

  • Lee SH, Whitledge TE, Kang SH (2007) Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea. Cont Shelf Res 27:2231–2249

    Google Scholar 

  • Lee SH, Stockwell D, Whitledge TE (2010) Uptake rates of dissolved inorganic carbon and nitrogen by under-ice phytoplankton in the Canada Basin in summer 2005. Polar Biol 33:1027–1036

    Google Scholar 

  • Lee SH, Joo Joo HM, Yun MS, Whitledge TE (2011) Recent phytoplankton productivity of the northern Bering Sea during early summer in 2007. Polar Biol 35:83–98. doi:10.1007/s00300-011-1035-9

    Google Scholar 

  • Lepore K, Moran SB, Grebmeier JM, Cooper LW, Lalande C, Maslowski W, Hill V, Bates NR, Hansell DA, Mathis JT, Kelly RP (2006) Seasonal and interannual changes in POC export and deposition in the Chukchi Sea. J Geophys Res 112:C10024. doi:10.1029/2006JC003555

    Google Scholar 

  • Letscher RT, Hansell DA, Kadko D (2011) Rapid removal of terrigenous dissolved organic carbon over the Eurasian shelves of the Arctic Ocean. Mar Chem 123:78–87

    CAS  Google Scholar 

  • Manabe S, Stouffer RJ (2000) Study of abrupt climate change by a coupled ocean atmosphere model. Quat Sci Rev 19:285–299

    Google Scholar 

  • Maslanik JA, Drobo S, Fowler C, Emery W, Barry R (2007) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett 34:L03711

    Google Scholar 

  • Mathis JT, Hansell DA, Bates NR (2005) Strong hydrographic controls on spatial and seasonal variability of dissolved organic carbon in the Chukchi Sea. Deep-Sea Res II 52:3245–3258

    Google Scholar 

  • Mathis JT, Hansell DA, Kadko D, Bates NR, Cooper LW (2007) Determining net dissolved organic carbon production in the hydrographically complex western Arctic Ocean. Limnol Oceanogr 52:1789–1799

    CAS  Google Scholar 

  • Mathis JT, Cross JN, Bates NR, Lomas ML, Moran SB, Mordy CW, Stabeno P (2010) Seasonal distribution of dissolved inorganic carbon and net community production on the Bering Sea Shelf. Biogeosciences 7:1769–1787. doi:10.5194/bg-7-1769-2010

    CAS  Google Scholar 

  • Mathis JT, Cross JN, Bates NR (2011a) Coupling primary production and terrestrial runoff to ocean acidification and carbonate mineral suppression in the Eastern Bering Sea. J Geophys Res 116:C02030. doi:10.1029/2010JC006453

    Google Scholar 

  • Mathis JT, Cross JN, Bates NR (2011b) The role of ocean acidification in systemic carbonate mineral suppression in the Bering Sea. Geophys Res Lett 38:L19602. doi:10.1029/2011GL048884

    Google Scholar 

  • Mathis JT, Byrne RH, McNeil CL, Pickart RP, Juranek L, Liu S, Ma J, Easley RA, Elliot MW, Cross JN, Reisdorph SC, Morison J, Lichendorph T, Feely RA (2012) Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states. Geophys Res Lett 39:L07606. doi:10.1029/2012GL051574

    Google Scholar 

  • McGuire AD, Chapin FS, Walsh JE, Wirth C (2006) Integrated regional changes in arctic climate feedbacks: implications for the global climate system. Annu Rev Environ Resour 31:61–91

    Google Scholar 

  • McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79(4):523–555

    Google Scholar 

  • McGuire AD, Hayes DJ, Kicklighter DW, Manizza M, Zhuang Q, Chen M, Follows MJ, Gurney K, McClelland JW, Melillo JM, Peterson BJ, Prinn RG (2010) An analysis of the carbon balance of the Arctic basin from 1997 to 2006. Tellus 62(5):455–474

    Google Scholar 

  • Moran SB, Ellis KM, Smith JN (1997) 234Th/238U disequilibria in the central Arctic Ocean: implications for particulate organic carbon export. Deep-Sea Res II 44:1593–1606

    CAS  Google Scholar 

  • Moran MA, Sheldon WM Jr, Sheldon JE (1999) Biodegradation of riverine dissolved organic carbon in five estuaries of the southeastern United States. Estuaries 22(1):55–64

    CAS  Google Scholar 

  • Moran SB, Kelly RP, Hagstrom K, Smith JN, Grebmeier JM, Cooper LW, Cota GF, Walsh JJ, Bates NR, Hansell DA, Maslowski RP (2005) Seasonal changes in POC export flux in the Chukchi Sea and implications for water column-benthic coupling in Arctic shelves. Deep-Sea Res II 52:3427–3451

    Google Scholar 

  • Moritz RE, Perovich DK (1996) Arctic System Science: ocean–atmosphere-Ice Interactions. SHEBA. Surface Heat Budget of the Arctic Ocean Science Plan. ARCSS/OAII Report Number 5. University of Washington, Seattle, 60 pp

    Google Scholar 

  • Neff JC, Finlay JC, Zimov SA, Davydov SP, Carrasco JJ, Schuur EAG, Davydova AI (2006) Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophys Res Lett 33:L23401. doi:10.1029/2006GL028222

    Google Scholar 

  • Nghiem SV, Rigor IG, Perovich DK, Clemente-Colón P, Weatherly JW, Neumann G (2007) Rapid reduction of Arctic perennial sea ice. Geophys Res Lett 34:L19504. doi:10.1029/2007GL031138

    Google Scholar 

  • Opsahl S, Benner R, Amon RW (1999) Major flux of terrigenous dissolved organic matter through the Arctic Ocean. Limnol Oceanogr 44:2017–2023

    CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686

    CAS  Google Scholar 

  • Overland JE, Wang M (2005) The Arctic climate paradox: the recent decrease of the Arctic Oscillation. Geophys Res Lett 32(6):L06701

    Google Scholar 

  • Pautzke CG (1979) Phytoplankton primary production below Arctic Ocean pack ice: an ecosystems analysis. Ph.D. thesis, University of Washington, Seattle, WA

    Google Scholar 

  • Perovich DK, Richter-Menge JA (2009) Loss of sea ice in the Arctic. Annu Rev Mar Sci 1:417–441

    Google Scholar 

  • Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ, Shiklomanov IA, Shiklomanov AI, Lammers RB, Rahmsdorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    CAS  Google Scholar 

  • Piepenburg D, Blackburn TH, Dorrien CF, Gutt J, Hall POJ, Hulth S, Kendall MA, Opalinski KW, Rachor E, Schmid MK (1995) Partitioning of benthic community respiration in the Arctic (northwestern Barents Sea). Mar Ecol Prog Ser 118:199–213

    Google Scholar 

  • Pirtle-Levy R (2006) A shelf-to-basin examination of food supply for Arctic benthic macrofauna and the potential biases of sampling methodology. Masters thesis, University of Tennessee, Knoxville, TN, USA. Available at/http://etd.utk.edu/2006/Pirtle-LevyRebecca.pdf

  • Plourde S, Campbell RG, Ashjian CJ, Stockwell DA (2005) Seasonal and regional patterns in egg production of Calanus glacialis/marshallae in the Chukchi and Beaufort Seas during spring and summer, 2002. Deep-Sea Res II 52:3411–3426

    Google Scholar 

  • Polyak L, Alley RB, Andrews JT, Brigham-Grette J, Cronin TMN, Darby DA, Dyke AS, Fitzpatrick JJ, Funder S, Holland M, Jennings AE, Miller GH, O’Regan M, Savelle J, Serreze M, St John K, White JWC, Wolff E (2010) History of sea ice in the Arctic. Quat Sci Rev 29(15–16):1757–1778

    Google Scholar 

  • Pomeroy LR, Deibel D (1986) Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters. Science 233:359–361

    CAS  Google Scholar 

  • Quay PD, Peacock C, Björkman K, Karl DM (2010) Measuring primary production rates in the ocean: enigmatic results between incubation and non-incubation methods at Station ALOHA. Glob Biogeochem Cycles 24:GB3014

    Google Scholar 

  • Raymond PA, Bauer JE (2000) Bacterial consumption of DOC during transport through a temperate estuary. Aquat Microb Ecol 22:1–12

    Google Scholar 

  • Raymond PA, McClelland JW, Holmes RM, Zhulidov AV, Mull K, Peterson BJ, Striegl RG, Aiken GR, Gurtovaya TY (2007) Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Glob Biogeochem Cycles 21:GB4011. doi:10.1029/2007GB002934

    Google Scholar 

  • Renaud PE, Morata N, Ambrose WG, Bowie JJ, Chiuchiolo A (2007a) Carbon cycling by seafloor communities on the eastern Beaufort Sea shelf. J Exp Mar Biol Ecol 349(2):248–260

    CAS  Google Scholar 

  • Renaud PE, Riedel A, Michel C, Morata N, Gosselin M, Juul-Pedersen T, Chiuchiolo A (2007b) Seasonal variation in benthic community oxygen demand: a response to an ice algal bloom in the Beaufort Sea, Canadian Arctic? J Mar Syst 67:1–12

    Google Scholar 

  • Rich J, Gosselin M, Sherr E, Sherr B, Kirchman DL (1997) High bacterial production, uptake and concentrations of dissolved organic matter in the Central Arctic Ocean. Deep-Sea Res II 44:1645–1663

    CAS  Google Scholar 

  • Ringuette M, Fortier L, Fortier M, Runge JA, Belancer S, Laroucher P, Weslawski J-M, Kwasniewski S (2002) Advanced recruitment and accelerated population development in Arctic calanoid copepods of the North Water. Deep-Sea Res II 49:5081–5100

    CAS  Google Scholar 

  • Robinson C (2008) Heterotrophic bacterial respiration. In: Kirchman DL (ed) Microbial ecology of the Oceans. Wiley-Blackwell, Hoboken, pp 299–334

    Google Scholar 

  • Rothrock DA, Zhang J (2005) Arctic Ocean sea ice volume: what explains its recent depletion? J Geophys Res 110(C1):C01002

    Google Scholar 

  • Rothrock DA, Zhang J, Yu Y (2003) The arctic ice thickness anomaly of the 1990s: a consistent view from observations and models. J Geophys Res 108(C3):28-1–28-10

    Google Scholar 

  • Sabine CL, Feely RA (2007) The oceanic sink for carbon dioxide. In: Reay D, Hewitt N, Grace J, Smith K (eds) Greenhouse gas sinks. CABI Publishing, Oxfordshire, pp 31–49

    Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305(5682):367–371

    CAS  Google Scholar 

  • Sambrotto RN, Goering JJ, McRoy CP (1984) Large yearly production of phytoplankton in the western Bering Strait. Science 225:1147–1150

    CAS  Google Scholar 

  • Sambrotto RN, Mordy C, Zeeman SI, Stabeno PJ, Macklin SA (2008) Physical forcing and nutrient conditions associated with patterns of Chl a and phytoplankton productivity in the southeastern Bering Sea during summer. Deep Sea Res II 55:1745–1760

    Google Scholar 

  • Savelieva NI, Semiletov IP, Vasilevskaya LN, Pugach SP (2000) A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia. Prog Oceanogr 47(2–4):279–297

    Google Scholar 

  • Schauer U (1997) Impact of eastern Arctic shelf waters on the Nansen Basin intermediate layers. J Geophys Res 102:3371–3382

    Google Scholar 

  • Schlosser P, Bauch D, Fairbanks R, Bönisch G (1994) Arctic river-runoff: mean residence time on the shelves and in the halocline. Deep-Sea Res I 41:1053–1068

    CAS  Google Scholar 

  • Semiletov IP, Pipko II, Shakhova NE, Dudarev OV, Pugach SP, Charkin AN, McRoy CP, Kosmach D, Gustafsson Ö (2011) Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion. Biogeosciences 8:2407–2426

    CAS  Google Scholar 

  • Serreze MC, Francis JA (2006) The Arctic amplification debate. Climate Change 76:241–264

    CAS  Google Scholar 

  • Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea ice cover. Science 315:1533–1536

    CAS  Google Scholar 

  • Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3(1):11–19

    Google Scholar 

  • Seuthe L, Darnis G, Riser CW, Wassmann P, Fortier L (2007) Winter-spring feeding and metabolism of Arctic copepods: insights from faecal pellet production and respiration measurements in the southeastern Beaufort Sea. Polar Biol 30:427–436

    Google Scholar 

  • Sherr EB, Sherr BF, Fessenden L (1997) Heterotrophic protists in the Central Arctic Ocean. Deep-Sea Res II 44:1665–1682

    CAS  Google Scholar 

  • Sherr EB, Sherr BF, Hartz AJ (2008) Microzooplankton grazing impact in the Western Arctic Ocean. Deep-Sea Res II 56:1264–1273

    Google Scholar 

  • Shimada K, Kamoshida T, Itoh M, Nishino S, Carmack E, McLaughlin F, Zimmermann S, Proshutinsky A (2007) Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett 33(8):L08605

    Google Scholar 

  • Shin K-H, Tanaka N (2004) Distribution of dissolved organic matter in the eastern Bering Sea, Chukchi Sea (Barrow Canyon) and Beaufort Sea. Geophys Res Lett 31:L24304. doi:10.1029/2004GL021039

    Google Scholar 

  • Sommerkorn M, Hassol S (2009) Arctic climate feedbacks: global implications. World Wildlife Fund report. In: Sommerkorn M, Hassol S (eds) World Wildlife Fund report, Washington D.C., USA, 100 pp

    Google Scholar 

  • Spencer RGM, Aiken GR, Wickland KP, Striegl RG, Hernes PJ (2008) Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Glob Biogeochem Cycles 22:GB4002

    Google Scholar 

  • Spencer RGM, Aiken GR, Butler KD, Dornblaser MM, Striegl RG, Hernes PJ (2009) Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: a case study of the Yukon River. Geophys Res Lett 36:L06401. doi:10.1029/2008GL036831

    Google Scholar 

  • Springer AM (1988) The paradox of pelagic food webs on the Bering-Chukchi continental shelf. Ph.D. dissertation. University of Alaska Fairbanks, Fairbanks, 232 pp

    Google Scholar 

  • Springer AM, McRoy CP (1993) The paradox of pelagic food webs in the northern Bering Sea-III. Patterns of primary production. Cont Shelf Res 13:575–599

    Google Scholar 

  • Springer AM, McRoy CP, Turco KR (1989) The paradox of pelagic food webs in the northern Bering Sea: II. Zooplankton communities. Cont Shelf Res 9:359–386

    Google Scholar 

  • Springer AM, McRoy CP, Flint MV (1996) The Bering Sea Green Belt: shelf-edge processes and ecosystem production. Fish Oceanogr 5:205–223

    Google Scholar 

  • Stabeno PJ, Schumacher JD, Ohtani K (1999) The physical oceanography of the Bering Sea. In: Loughlin TR, Ohtani K (eds) Dynamics of the Bering Sea: a summary of physical, chemical, and biological characteristics, and a synopsis of research on the Bering Sea. AK-SG-99-03, 1–28. North Pacific Marine Science Organization (PICES), University of Alaska Sea Grant, Fairbanks

    Google Scholar 

  • Stein R, Macdonald RW (2004) Arctic Ocean organic carbon accumulation and its global significance. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 315–322

    Google Scholar 

  • Steinacher M, Joos F, Frolicher TL, Platter G-K, Doney SC (2009) Imminent ocean acidification of the Arctic projected with the NCAR global coupled carbon-cycle climate model. Biogeosciences 6:515–533

    CAS  Google Scholar 

  • Steward GF, Smith DC, Azam F (1996) Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar Ecol Prog Ser 131:287–300

    Google Scholar 

  • Striegl RG, Dornblaser MM, Aiken GR, Wickland KP, Raymond PA (2007) Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resour Res 43(2):W02411

    Google Scholar 

  • Stroeve JC, Serreze MC, Fetterer F, Arbetter T, Meier W, Maslanik J, Knowles K (2005) Tracking the Arctic’s shrinking ice cover: another extreme September minimum in 2004. Geophys Res Lett 32(4):L04501

    Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34(9):L09501

    Google Scholar 

  • Subba Rao DV, Platt T (1984) Primary production of Arctic waters. Polar Biol 3:191–210

    Google Scholar 

  • Waddington JM, Roulet NT (1997) Groundwater flow and dissolved carbon movement in a boreal peatland. J Hydrol 191:122–138

    CAS  Google Scholar 

  • Walvoord MA, Striegl RG (2007) Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys Res Lett 34(12):L12402

    Google Scholar 

  • Wang J, Ikeda M, Zhang S, Gerdes R (2005) Linking the northern hemisphere sea-ice reduction trend and the quasi-decadal arctic sea-ice oscillation. Clim Dyn 24(2–3):115–130

    Google Scholar 

  • Wassmann P, Bauerfeind E, Fortier M, Fukuchi M, Hargrave B, Moran B, Noji T, Nöthig E-M, Olli K, Peinert R, Sasaki H, Shevchenko VP (2003) Particulate organic carbon flux to the Arctic Ocean sea floor. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, pp 101–138

    Google Scholar 

  • Wassmann P, Carroll J, Bellerby RGJ (2008) Carbon flux and ecosystem feedback in the northern Barents Sea in an era of climate change: an introduction. Deep Sea Res II 55(20–21):2143–2153

    Google Scholar 

  • Wheeler PA, Gosselin M, Sherr E, Thibault D, Kirchman DL, Benner R, Whitledge TE (1996) Active cycling of organic carbon in the central Arctic Ocean. Nature 380:697–699

    CAS  Google Scholar 

  • Winton M (2006) Does the Arctic sea ice have a tipping point? Geophys Res Lett 33(23):L23504

    Google Scholar 

  • Woodgate RA, Aagaard K, Weingartner TJ (2005) Monthly temperature, salinity and transport variability of the Bering Strait through flow. Geophys Res Lett 32(4):L04601

    Google Scholar 

  • Wu PL, Wood R, Stott P (2005) Human influence on increasing arctic river discharges. Geophys Res Lett 32(2):L02703

    Google Scholar 

  • Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K (2009) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326(5956):1098–1100

    CAS  Google Scholar 

  • Zeeman SI (1992) The importance of primary production and CO2. In: Nagel PA (ed) Results of the third joint US-USSR Bering and Chukchi seas expedition (BERPAC), summer 1988. U.S. Fish and Wildlife Service, Washington, DC, pp 39–49

    Google Scholar 

  • Zhulidov AV (1997) Atlas of Russian wetlands: biogeography and metal concentrations. National Hydrology Research Institute, Environment Canada, Saskatoon, Saskatchewan, Canada, 312 pp

    Google Scholar 

Download references

Acknowledgments

We thank all of our colleagues who have conducted the work that we have summarized and explored here. This synthesis effort was supported by the National Science Foundation (PLR-1107997) through a grant to JTM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy T. Mathis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mathis, J.T. et al. (2014). Carbon Biogeochemistry of the Western Arctic: Primary Production, Carbon Export and the Controls on Ocean Acidification. In: Grebmeier, J., Maslowski, W. (eds) The Pacific Arctic Region. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8863-2_9

Download citation

Publish with us

Policies and ethics