Skip to main content

Bottom-Up Effects on Gall Distribution

  • Chapter
  • First Online:
Neotropical Insect Galls

Abstract

The global pattern of insect gall distribution predicts that the highest richness of such insect guild is found in hot, dry and nutritionally poor environments. In search for a mechanism for this pattern, most studies have focused on top-down effects, such as predation and parasitism, which could potentially be weakened in those stressful environments and favour gall survivorship. In this chapter, however, we examine bottom-up effects that could also be suppressed under environmental stress and, therefore, create suitable hosts for galling insects. We discuss how plants can defend against galling insects and the role of such defences in shaping the pattern of gall distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts R (1990) Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84:391–397

    Google Scholar 

  • Bairstow KA, Clarke KL, McGeoch MA, Andrew NR (2010) Leaf miner and plant galler species richness on Acacia: relative importance of plant traits and climate. Oecologia 163:437–448

    PubMed  Google Scholar 

  • Basset YND (2001) Communities of insect herbivores foraging on mature trees vs. seedlings of Pourouma bicolor (Cecropiaceae) in Panama. Oecologia 129:253–260

    Google Scholar 

  • Beadle NCW (1966) Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology 47:992–1007

    Google Scholar 

  • Becker P (1983) Effects of insect herbivory and artificial defoliation on survival of Shorea seedlings. In: Sutton SL, Whitmore TC, Chadwick AC (eds) Tropical rainforest: ecology and management. Blackwell Scientific Publications, Oxford, pp 273–300

    Google Scholar 

  • Bell AD, Bell A, Dines TD (1999) Branch construction and bud defence status at the canopy surface of a West African rainforest. Biol J Linn Soc 66:481–499

    Google Scholar 

  • Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Chapman and Hall, New York

    Google Scholar 

  • Berryman AA (1988) Towards a unified theory of plant defense. In: Mattson WJ, Levieux J, Bernard-Dagan C (eds) Mechanisms of woody plant defenses against insects: search for pattern. Springer, New York, pp 39–55

    Google Scholar 

  • Blanche KR (2000) Diversity of insect galls along a temperature-rainfall gradient in the tropical savannah region of the northern territory, Australia. Austral Ecol 25:311–318

    Google Scholar 

  • Blanche KR, Ludwig JA (2001) Species richness of gall inducing insects and host plants along an altitudinal gradient in Big Bend National Park, Texas. Am Midl Nat 145:219–232

    Google Scholar 

  • Blanche KR, Westoby M (1995) Gall-forming insect diversity is linked to soil fertility via host plant taxon. Ecology 76:2334–2337

    Google Scholar 

  • Blanche KR, Westoby M (1996) The effects of the taxon and geographic range size of host eucalypt species on the species richness of gall-forming insects. Aust J Ecol 21:332–335

    Google Scholar 

  • Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Annu Rev Ecol Syst 13:229–259

    Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    CAS  Google Scholar 

  • Choong MF (1996) What makes a leaf tough and how this affects the pattern of Castanopsis fissa leaf consumption by caterpillars. Funct Ecol 10:668–674

    Google Scholar 

  • Choong MF, Lucas PW, Ong JSY, Pereira B, Tan HTW, Turner IM (1992) Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytol 121:597–610

    Google Scholar 

  • Christiansen E, Waring RH, Berryman AA (1987) Resistance of conifers to bark beetle attack searching for general relationships. For Ecol Manage 22:89–106

    Google Scholar 

  • Clarke LR (1962) The general biology of Cardiaspina albitextura (Psyllidae) and its abundance in relation to weather and parasitism. Aust J Zool 10:537–586

    Google Scholar 

  • Clarke LR (1963) The influence of predation by Syrphus sp. on the numbers of Cardiaspina albitextura (Psyllidae). Aust J Zool 11:470–487

    Google Scholar 

  • Coley PD (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr 53:209–233

    Google Scholar 

  • Coley PD (1988) Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74:531–536

    Google Scholar 

  • Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    CAS  PubMed  Google Scholar 

  • Cornell HV (1983) The secondary chemistry and complex morphology of galls formed by the Cynipinae (Hymenoptera): why and how? Am Midl Nat 110:225–234

    Google Scholar 

  • Cowling RM, Campbell BM (1983) The definition of leaf consistence categories in the fynbos biome and their distribution along an altitudinal gradient in the South Eastern Cape. J S Afr Bot 49:87–101

    Google Scholar 

  • Crawley MJ (1983) Herbivory: the dynamics of animal-plant interactions. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • De Simone O, Junk WJ, Schmidt W (2003) Central Amazon floodplain forest: root adaptations to prolonged flooding. Russ J Plant Physiol 50:943–951

    Google Scholar 

  • Deverall BJ (1977) Defense mechanisms of plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Faeth SH, Connor EF, Simberloff D (1981) Early leaf abscission: a neglected source of mortality for folivores. Am Nat 117:409–415

    Google Scholar 

  • Fernandes GW (1990) Hypersensitivity: a neglected plant resistance mechanism against insect herbivores. Environ Entomol 19:1173–1182

    Google Scholar 

  • Fernandes GW (1998) Hypersensitivity as a phenotypic basis of plant induced resistance against a galling insect (Diptera: Cecidomyiidae). Environ Entomol 27:260–267

    Google Scholar 

  • Fernandes GW, Negreiros D (2001) The occurrence and effectiveness of hypersensitive reaction against galling herbivores across host taxa. Ecol Entomol 26:46–55

    Google Scholar 

  • Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76:161–167

    Google Scholar 

  • Fernandes GW, Price PW (1991) Comparison of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 91–115

    Google Scholar 

  • Fernandes GW, Price PW (1992) The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia 90:14–20

    Google Scholar 

  • Fernandes GW, Whitham TG (1989) Selective fruit abscission by Juniperus monosperma as an induced defense against predators. Am Midl Nat 121:389–392

    Google Scholar 

  • Fernandes GW, Cornelissen TG, Isaias RMS, Lara TAF (2000) Plants fight gall formation: hypersensitivity. Ciên Cult 52:49–54

    Google Scholar 

  • Fernandes GW, Duarte H, Lüttge U (2003) Hypersensitivity of Fagus sylvatica L. against leaf galling insects. Trees 17:407–411

    Google Scholar 

  • Fernandes GW, De Marco JP, Schönrogge K (2008) Plant organ abscission and the GREEN island effect caused by gallmidges (Cecidomyiidae) on tropical trees. Arthropod-Plant Interact 2:93–99

    Google Scholar 

  • Givnish TJ (1979) On the significance of leaf form. In: Solbrig OT, Jain J, Johnson GB, Raven PH (eds) Topics in plant population biology. Columbia University Press, New York, pp 375–407

    Google Scholar 

  • Gonçalves-Alvim SJ, Korndorf G, Fernades GW (2006) Sclerophylly in Qualea parviflora (Vochysiaceae): influence of herbivory, mineral nutrients, and water status. Plant Ecol 187:153–162

    Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, New York

    Google Scholar 

  • Gulmon SL, Mooney HA (1986) Costs of defense and their effects on plant productivity. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 681–698

    Google Scholar 

  • Gutschick VP (1999) Biotic and abiotic consequences of differences in leaf structure. New Phytol 143:3–182

    Google Scholar 

  • Harper JL (1989) The value of a leaf. Oecologia 80:53–58

    CAS  PubMed  Google Scholar 

  • Hartley SE, Lawton JH (1992) Host-plant manipulation by gall-insects: a test of the nutrition hypothesis. J Anim Ecol 61:113–119

    Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Google Scholar 

  • Höglund S, Larsson S, Wingsle G (2005) Both hypersensitive and non-hypersensitive responses are associated with resistance in Salix viminalis against the gall midge Dasineura marginemtorquens. J Exp Bot 56:3215–3222

    PubMed  Google Scholar 

  • Isaev AS, Baranchikov YN, Malutina VS (1988) The larch gall midge in seed orchards of south Siberia. In: Berryman AA (ed) Dynamics of forest insect populations. Plenum, New York, pp 29–44

    Google Scholar 

  • Janzen DH (1977) Why fruits rot, seeds mold, and meat spoils. Am Nat 111:691–713

    CAS  Google Scholar 

  • Julião GR, Venticinque EM, Fernandes GW, Kraus JE (2005) Richness and abundance of gall-forming insects in the Mamirauá Varzea, a flooded Amazonian forest. Uakari 1:39–42

    Google Scholar 

  • Kikuzawa K (1991) A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am Nat 138:1250–1263

    Google Scholar 

  • Kikuzawa K (1995) The basis for variation in leaf longevity of plants. Vegetation 121:89–100

    Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727

    Google Scholar 

  • Király Z (1980) Defenses triggered by the invader. Hypersensitivity. In: Horsfall J, Cowling EB (eds) Plant diseases, vol 5. Academic, New York, pp 201–225

    Google Scholar 

  • Kirst GO (1974) Zur Physiologie der Galle von Mikiola fagi Htg. auf Blättern von Fagus sylvatica L. 3. 14CO2-Licht- und Dunkelfixierung der Galle. Biochem Physiol Pflanzenbau 165:457–466

    CAS  Google Scholar 

  • Kirst GO, Rapp H (1974) Zur Physiologie der Galle von Mikiola fagi Htg. auf Blättern von Fagus sylvatica L. 2. Transport 14C-markierter Assimilate aus dem befallenen Blatt und aus Nachbar-blättern in die Galle. Biochem Physiol Pflanzenbau 165:445–455

    Google Scholar 

  • Kitajima K, Poorter L (2010) Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol 186:708–721

    PubMed  Google Scholar 

  • Lara ACF, Fernandes GW, Goncalves-Alvim SJ (2002) Tests of hypotheses on patterns of gall distribution along an altitudinal gradient. Trop Zool 15:219–232

    Google Scholar 

  • Larson KC, Whitham TG (1991) Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions. Oecologia 88:15–21

    Google Scholar 

  • Leite GLD, Veloso RVS, Castro ACR, Lopes PSN, Fernandes GW (2007) Efeito do AIB sobre a qualidade e fitossanidade dos alporques de influência da Caryocar brasiliense Camb (Caryocaraceae). Rev Árv 31(2):315–320

    CAS  Google Scholar 

  • Lowman MD (1982) Effects of different rates and methods of leaf area removal on rain forest seedlings of coachwood (Ceratopetalum apetalum). Aust J Bot 30:477–483

    Google Scholar 

  • Lucas PW, Choong MF, Tan HTW, Turner IM, Berrick AJ (1991) The fracture toughness of the leaf of the dicotyledon, Calophyllum inophyllum L. (Guttiferae). Philos Trans R Soc 334(B):95–106

    Google Scholar 

  • Maclean DJ, Sargent JA, Tommerup IC, Ingram DS (1974) Hypersensitivity as the primary event in resistance to fungal parasites. Nature 249:186–187

    CAS  PubMed  Google Scholar 

  • Madden JL (1988) Sirex in Australasia. In: Berryman AA (ed) Dynamics of forest insect populations: patterns, causes, implications. Plenum, New York, pp 407–429

    Google Scholar 

  • Madeira JA, Ribeiro KT, Fernandes GW (1998) Herbivory, tannins and SCLEROPHYLLY in Chamaecrista linearifolia (Fabaceae) along an altitudinal gradient. Braz J Ecol 2:24–29

    Google Scholar 

  • Mckey D, Waterman PG, Mbi CN, Gartlan JS, Struhsaker TT (1978) Phenolic content of vegetation in two African rain forests: ecological implications. Science 202:61–64

    Google Scholar 

  • Medianero E, Barrios H (2001) Riqueza de insectos cecidógenos en el dosel y sotobosque de dos zonas ecológicas en Panamá. Scientia 16:17–42

    Google Scholar 

  • Monk CD (1966) An ecological significance of evergreenness. Ecology 47:504–505

    Google Scholar 

  • Mooney HA, Gulmon SL (1982) Constraints on leaf structure and function in reference to herbivory. Bioscience 32:198–206

    CAS  Google Scholar 

  • Neves FS, Araújo LS, Fagundes M, Espírito-Santo MM, Fernandes GW, Sánchez-Azofeifa GA, Quesada M (2010) Canopy herbivory and insect herbivore diversity in a dry forest-savanna transition in Brazil. Biotropica 42:112–118

    Google Scholar 

  • Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. The University of Chicago Press, Chicago

    Google Scholar 

  • Oliveira PS (1997) The ecological function of extrafloral nectaries: herbivore deterrence by visiting ants and reproductive output in Caryocar brasiliense (Caryocaraceae). Funct Ecol 11:323–330

    Google Scholar 

  • Ollerstam O, Rohfritsch O, Höglund S, Larsson S (2002) A rapid hypersensitive response associated with resistance in the willow Salix viminalis against the gall midge Dasineura marginemtorquens. Entomol Exp Appl 102:153–162

    Google Scholar 

  • Onoda Y, Schieving F, Anten NPR (2008) Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach. Ann Bot 101:727–736

    PubMed Central  PubMed  Google Scholar 

  • Parker GG (1995) Structure and microclimate of forest canopies. In: Lowman MD, Nadkarni NM (eds) Forest canopies. Academic, San Diego, pp 431–455

    Google Scholar 

  • Preszler RW, Price PW (1993) The influence of Salix leaf abscission on leaf-miner survival and life history. Ecol Entomol 18:150–154

    Google Scholar 

  • Price PW, Waring GL, Fernandes GW (1987) Hypotheses on the adaptive nature of galls. Proc Entomol Soc Wash 88:361–363

    Google Scholar 

  • Price PW, Fernandes GW, Lara ACF, Brawn J, Barrios H, Wright MG, Ribeiro SP, Rothcliff N (1998) Global patterns in local number of insect galling species. J Biogeogr 25:581–591

    Google Scholar 

  • Puritch GS, Mullick DB (1975) Effect of water stress on the rate of non-suberized impervious tissue formation following wounding in Abies grandis. J Exp Bot 26:903–910

    Google Scholar 

  • Rapp H, Kirst GO (1974) Zur Physiologie der Galle von Mikiola fagi Htg. auf Blättern von Fagus sylvatica L. 1. Vergleichende 410 Untersuchungen einiger Inhaltsstoffe der Galle und des Blattes. Biochem Physiol Pflanzenbau 165:437–444

    CAS  Google Scholar 

  • Read J, Sanson GD, de Garine-Wichatitsky M, Jaffré T (2006) Sclerophylly in two contrasting tropical environments: low nutrients vs. low rainfall. Am J Bot 93:1601–1614

    PubMed  Google Scholar 

  • Reich PB, Uhl C, Walters MB, Ellsworth DS (1991) Leaf life-span as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia 86:16–24

    Google Scholar 

  • Ribeiro SP (2003) Insect herbivores in the canopies of savannas and rainforests. In: Basset Y, Novotny V, Miller S, Kitching R (eds) Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy, vol 1. Cambridge University Press, Cambridge, pp 348–359

    Google Scholar 

  • Ribeiro SP, Basset Y (2007) Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: the importance of leaf sclerophylly. Ecography 30:663–672

    Google Scholar 

  • Ribeiro KT, Madeira JA, Monteiro RF (1998a) Does flooding favour galling insects? Ecol Entomol 23:491–494

    Google Scholar 

  • Ribeiro SP, Carneiro MAA, Fernandes GW (1998b) Free-feeding insect herbivores along environmental gradients in Serra do Cipó: basis for a management plan. J Insects Conserv 2:107–118

    Google Scholar 

  • Ribeiro SP, Barbosa M, Tagliati MC, Chavana-Bryant C (2011) Vegetation traits and herbivory distribution in an Australian subtropical forest. Mem Queensland Mus 50:481–493

    Google Scholar 

  • Ribeiro-Mendes HN, Marques ESA, Silva IM, Fernandes GW (2002) Influence of host-plant sex and habitat on survivorship of insect galls within the geographical range of the host-plant. Trop Zool 15:5–15

    Google Scholar 

  • Risley LS, Crossley DA Jr (1988) Herbivore-caused greenfall in the southern Appalachians. Ecology 69:1118–1127

    Google Scholar 

  • Santos JC, Silveira FAO, Fernandes GW (2008) Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera: Cecidomyiidae) on larger shoots of its host plant Bauhinia brevipes (Fabaceae). Evol Ecol 22:123–137

    Google Scholar 

  • Schimper AFW (1898) Pflanzengeographie auf physiologischen Grundlage. Fischer, Jena

    Google Scholar 

  • Schimper AFW (1903) Plant-geography upon a physiological basis (trans: Fisher WR). Clarendon, Oxford

    Google Scholar 

  • Schultz BB (1992) Insect herbivores as potential causes of mortality and adaptation in gallforming insects. Oecologia 90:297–299

    Google Scholar 

  • Seddon G (1974) Xerophytes, xeromorphs and sclerophylls: the history of some concepts in ecology. Biol J Linn Soc 6:65–87

    CAS  Google Scholar 

  • Sobrado MA, Medina E (1980) General morphology, anatomical structure, and nutrient concentration of sclerophyllous leaves of the “bana” vegetation of Amazonas. Oecologia 45:341–345

    Google Scholar 

  • Stiling P, Simberloff D (1989) Leaf abscission: induced defense against pests or response to damage? Oikos 55:43–49

    Google Scholar 

  • Stiling P, Simberloff D, Bodbeck BV (1991) Variation in rates of leaf abscission between plants may affect the distribution patterns of sessile insects. Oecologia 88:367–370

    Google Scholar 

  • Stone GN et al (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu Rev Entomol 47:633–668

    CAS  PubMed  Google Scholar 

  • Taper ML, Case TJ (1987) Interactions between oak tannins and parasite community structure: unexpected benefits of tannins to cynipid gall-wasps. Oecologia 71:254–261

    Google Scholar 

  • Turner IM (1994) Sclerophylly: primarily protective? Funct Ecol 8:669–675

    Google Scholar 

  • Vincent JFV (1991) Strength and fracture of grasses. J Mater Sci 26:1947–1950

    Google Scholar 

  • Warming E (1909) Ecology of plants, an introduction to the study of plant communities (trans: Groom P, Balfour IB). Clarendon Press, Oxford

    Google Scholar 

  • Williams AG, Whitham TG (1986) Premature leaf abscission: an induced plant defense against all aphids. Ecology 67:1619–1627

    Google Scholar 

  • Woolhouse HW (1978) Senescence processes in the life cycle of flowering plants. Bioscience 28:25–31

    Google Scholar 

  • Wright IJ, Cannon K (2001) Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct Ecol 15:351–359

    Google Scholar 

  • Wright MG, Samways MJ (1996) Gall-insect richness in African Fynbos and Karoo vegetation: the importance of plant species richness. Biodivers Lett 3:151–155

    Google Scholar 

  • Wright MG, Samways MJ (1998) Insect species richness in a diverse flora: gall-insects in the Cape Floristic Region, South Africa. Oecologia 115:427–433

    Google Scholar 

  • Wright SL, Hall RW, Peacock JW (1989) Effect of simulated insect damage on growth and survival of Northern Red Oak (Quercus rubra L.) seedlings. Environ Entomol 18:235–239

    Google Scholar 

  • Wright IJ, Westoby M, Reich PB (2002) Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J Ecol 90:534–553

    Google Scholar 

  • Yamazaki K, Sugiura S (2008) Deer predation on leaf miners via leaf abscission. Naturwissenschaften 95:263–268

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton Barbosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barbosa, M., Fernandes, G.W. (2014). Bottom-Up Effects on Gall Distribution. In: Fernandes, G., Santos, J. (eds) Neotropical Insect Galls. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8783-3_6

Download citation

Publish with us

Policies and ethics