Skip to main content

Evolution of Structural and Coordination Features Within the Methionine Sulfoxide Reductase B Family

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 39))

Summary

In this review, we summarize the evolution, sequence, structural and coordination peculiarities of proteins belonging to the Methionine Sulfoxide Reductase B family (MsrBs). These proteins represent important redox proteins. MsrBs are found in all kingdoms of life. Whereas prokaryotes have only one type of MsrB, mammals possess three, MsrB1, MsrB2 and MsrB3, distributed in different cellular compartments, and regulated by alternative splicing and specific targeting signals. Structural analysis of mammalian and bacterial MsrBs revealed a well-conserved β-core, and dramatic variability in C-and N-terminus. Mostly, MsrBs contain structural zinc ions coordinated by four cysteines. However, some of MsrBs lack coordinating cysteines and, therefore may not contain zinc ion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Met:

– Methionine

Msr:

– Methionine sulfoxide reductase

MsrB:

– Methionine sulfoxide reductase B

ROS:

– Reactive oxygen species

References

  • Aachmann FL, Sal LS, Kim HY, Marino SM, Gladyshev VN, Dikiy A (2010) Insights into function, catalytic mechanism, and fold evolution of selenoprotein methionine sulfoxide reductase B1 through structural analysis. J Biol Chem 285:33315–33323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aachmann FL, Kwak GH, Del Conte R, Kim HY, Gladyshev VN, Dikiy A (2011) Structural and biochemical analysis of mammalian methionine sulfoxide reductase B2. Proteins 79:3123–3131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218

    Article  CAS  PubMed  Google Scholar 

  • Auld DS (2001a) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313

    Article  CAS  PubMed  Google Scholar 

  • Auld DS (2001b) Zinc sites in metalloenzymes and related proteins. In: Bertini I, Sigel A, Sigel H (eds) Handbook on metalloproteins. Marcel Dekker, New York, pp 881–959

    Google Scholar 

  • Bar-Noy S, Moskovitz J (2002) Mouse methionine sulfoxide reductase B: effect of selenocysteine incorporation on its activity and expression of the seleno-containing enzyme in bacterial and mammalian cells. Biochem Biophys Res Commun 297:956–961

    Article  CAS  PubMed  Google Scholar 

  • Bell IM, Fisher ML, Wu ZP, Hilvert D (1993) Kinetic studies on the peroxidase activity of selenosubtilisin. Biochemistry 32:3754–3762

    Article  CAS  PubMed  Google Scholar 

  • Berry MB, Phillips GN Jr (1998) Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2+ Ap5A, and Mn2+ Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2+ and Mn2+. Proteins 32:276–288

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Sigel A, Sigel H (2001) Handbook on metalloproteins. Marcel Dekker, New York

    Google Scholar 

  • Bock A, Forchhammer K, Heider J, Baron C (1991) Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem Sci 16:463–467

    Article  CAS  PubMed  Google Scholar 

  • Boschi-Muller S, Azza S, Sanglier-Cianferani S, Talfournier F, Van Dorsselear A, Branlant G (2000) A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli. J Biol Chem 275:35908–35913

    Article  CAS  PubMed  Google Scholar 

  • Boschi-Muller S, Olry A, Antoine M, Branlant G (2005) The enzymology and biochemistry of methionine sulfoxide reductases. Biochim Biophys Acta 1703:231–238

    Article  CAS  PubMed  Google Scholar 

  • Boschi-Muller S, Gand A, Branlant G (2008) The methionine sulfoxide reductases: catalysis and substrate specificities. Arch Biochem Biophys 474:266–273

    Article  CAS  PubMed  Google Scholar 

  • Brot N, Weissbach H (1983) Biochemistry and physiological role of methionine sulfoxide residues in proteins. Arch Biochem Biophys 223:271–281

    Article  CAS  PubMed  Google Scholar 

  • Brot N, Weissbach H (2000) Peptide methionine sulfoxide reductase: biochemistry and physiological role. Biopolymers 55:288–296

    Article  CAS  PubMed  Google Scholar 

  • Brot N, Weissbach L, Werth J, Weissbach H (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci U S A 78:2155–2158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caldwell P, Luk DC, Weissbach H, Brot N (1978) Oxidation of the methionine residues of Escherichia coli ribosomal protein L12 decreases the protein’s biological activity. Proc Natl Acad Sci U S A 75:5349–5352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carfi A, Pares S, Duee E, Galleni M, Duez C, Frere JM, Dideberg O (1995) The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J 14:4914–4921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciorba MA, Heinemann SH, Weissbach H, Brot N, Hoshi T (1997) Modulation of potassium channel function by methionine oxidation and reduction. Proc Natl Acad Sci U S A 94:9932–9937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciorba MA, Heinemann SH, Weissbach H, Brot N, Hoshi T (1999) Regulation of voltage-dependent K + channels by methionine oxidation: effect of nitric oxide and vitamin C. FEBS Lett 442:48–52

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolska O, Rychkov G, Shumilina E, Nerinovski K, Schmidt A, Shabalin K, Yakimov A, Dikiy A (2012) Structural insights into interaction between mammalian methionine sulfoxide reductase B1 and thioredoxin. J Biomed Biotechnol 2012:586539

    Article  PubMed Central  PubMed  Google Scholar 

  • Ezraty B, Aussel L, Barras F (2005) Methionine sulfoxide reductases in prokaryotes. Biochim Biophys Acta 1703:221–229

    Article  CAS  PubMed  Google Scholar 

  • Fabiane SM, Sohi MK, Wan T, Payne DJ, Bateson JH, Mitchell T, Sutton BJ (1998) Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Biochemistry 37:12404–12411

    Article  CAS  PubMed  Google Scholar 

  • Fomenko DE, Xing W, Adair BM, Thomas DJ, Gladyshev VN (2007) High-throughput identification of catalytic redox-active cysteine residues. Science 315:387–389

    Article  CAS  PubMed  Google Scholar 

  • Gerdts CJ, Elliott M, Lovell S, Mixon MB, Napuli AJ, Staker BL, Nollert P, Stewart L (2008) The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS). Acta Crystallogr Sect D 64:1116–1122

    Article  CAS  Google Scholar 

  • Gladyshev VN, Jeang KT, Stadtman TC (1996) Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci U S A 93:6146–6151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Go YM, Jones DP (2008) Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 1780:1273–1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gromer S, Johansson L, Bauer H, Arscott LD, Rauch S, Ballou DP, Williams CH Jr, Schirmer RH, Arner ES (2003) Active sites of thioredoxin reductases: why selenoproteins? Proc Natl Acad Sci U S A 100:12618–12623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansel A, Jung S, Hoshi T, Heinemann SH (2003) A second human methionine sulfoxide reductase (hMSRB2) reducing methionine-R-sulfoxide displays a tissue expression pattern distinct from hMSRB1. Redox Rep 8:384–388

    Article  CAS  PubMed  Google Scholar 

  • Hansel A, Heinemann SH, Hoshi T (2005) Heterogeneity and function of mammalian MSRs: enzymes for repair, protection and regulation. Biochim Biophys Acta 1703:239–247

    Article  CAS  PubMed  Google Scholar 

  • Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hondal RJ, Nilsson BL, Raines RT (2001) Selenocysteine in native chemical ligation and expressed protein ligation. J Am Chem Soc 123:5140–5141

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Escribano J, Sarfarazi M, Coca-Prados M (1999) Identification, expression and chromosome localization of a human gene encoding a novel protein with similarity to the pilB family of transcriptional factors (pilin) and to bacterial peptide methionine sulfoxide reductases. Gene 233:233–240

    Article  CAS  PubMed  Google Scholar 

  • Huber RE, Criddle RS (1967) Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch Biochem Biophys 122:164–173

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Hansel A, Kasperczyk H, Hoshi T, Heinemann SH (2002) Activity, tissue distribution and site-directed mutagenesis of a human peptide methionine sulfoxide reductase of type B: hCBS1. FEBS Lett 527:91–94

    Article  CAS  PubMed  Google Scholar 

  • Kauffmann B, Favier F, Olry A, Boschi-Muller S, Carpentier P, Branlant G, Aubry A (2002) Crystallization and preliminary X-ray diffraction studies of the peptide methionine sulfoxide reductase B domain of Neisseria meningitidis PILB. Acta Crystallogr D Biol Crystallogr 58:1467–1469

    Article  PubMed  Google Scholar 

  • Kim HY, Gladyshev VN (2004a) Characterization of mouse endoplasmic reticulum methionine-R-sulfoxide reductase. Biochem Biophys Res Commun 320:1277–1283

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Gladyshev VN (2004b) Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol Biol Cell 15:1055–1064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HY, Gladyshev VN (2005) Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases. PLoS Biol 3:e375

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim HY, Gladyshev VN (2006) Alternative first exon splicing regulates subcellular distribution of methionine sulfoxide reductases. BMC Mol Biol 7:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim HY, Gladyshev VN (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem J 407:321–329

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Kim JR (2008) Thioredoxin as a reducing agent for mammalian methionine sulfoxide reductases B lacking resolving cysteine. Biochem Biophys Res Commun 371:490–494

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Fomenko DE, Yoon YE, Gladyshev VN (2006) Catalytic advantages provided by selenocysteine in methionine-S-sulfoxide reductases. Biochemistry 45:13697–13704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YK, Shin YJ, Lee WH, Kim HY, Hwang KY (2009) Structural and kinetic analysis of an MsrA-MsrB fusion protein from Streptococcus pneumoniae. Mol Microbiol 72:699–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korndorfer IP, Fessner WD, Matthews BW (2000) The structure of rhamnose isomerase from Escherichia coli and its relation with xylose isomerase illustrates a change between inter and intra-subunit complementation during evolution. J Mol Biol 300:917–933

    Article  CAS  PubMed  Google Scholar 

  • Kryukov GV, Kumar RA, Koc A, Sun Z, Gladyshev VN (2002) Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci U S A 99:4245–4250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar RA, Koc A, Cerny RL, Gladyshev VN (2002) Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J Biol Chem 277:37527–37535

    Article  CAS  PubMed  Google Scholar 

  • Kuschel L, Hansel A, Schonherr R, Weissbach H, Brot N, Hoshi T, Heinemann SH (1999) Molecular cloning and functional expression of a human peptide methionine sulfoxide reductase (hMsrA). FEBS Lett 456:17–21

    Article  CAS  PubMed  Google Scholar 

  • Lange OF, Rossi P, Sgourakis NG, Song Y, Lee HW, Aramini JM, Ertekin A, Xiao R, Acton TB, Montelione GT, Baker D (2012) Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc Natl Acad Sci U S A 109:10873–10878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee TH, Kim HY (2008) An anaerobic bacterial MsrB model reveals catalytic mechanisms, advantages, and disadvantages provided by selenocysteine and cysteine in reduction of methionine-R-sulfoxide. Arch Biochem Biophys 478:175–180

    Article  CAS  PubMed  Google Scholar 

  • Lee BC, Lee YK, Lee HJ, Stadtman ER, Lee KH, Chung N (2005) Cloning and characterization of antioxidant enzyme methionine sulfoxide-S-reductase from Caenorhabditis elegans. Arch Biochem Biophys 434:275–281

    Article  CAS  PubMed  Google Scholar 

  • Lee BC, Dikiy A, Kim HY, Gladyshev VN (2009) Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim Biophys Acta 1790:1471–1477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemire BD, Fankhauser C, Baker A, Schatz G (1989) The mitochondrial targeting function of randomly generated peptide sequences correlates with predicted helical amphiphilicity. J Biol Chem 264:20206–20215

    CAS  PubMed  Google Scholar 

  • Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A 93:15036–15040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levine RL, Berlett BS, Moskovitz J, Mosoni L, Stadtman ER (1999) Methionine residues may protect proteins from critical oxidative damage. Mech Ageing Dev 107:323–332

    Article  CAS  PubMed  Google Scholar 

  • Lin TY (1999) G33D mutant thioredoxin primarily affects the kinetics of reaction with thioredoxin reductase. Probing the structure of the mutant protein. Biochemistry 38:15508–15513

    Article  CAS  PubMed  Google Scholar 

  • Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science, Mill Valley

    Google Scholar 

  • Lowther WT, Brot N, Weissbach H, Matthews BW (2000) Structure and mechanism of peptide methionine sulfoxide reductase, an “anti-oxidation” enzyme. Biochemistry 39:13307–13312

    Article  CAS  PubMed  Google Scholar 

  • Lowther WT, Weissbach H, Etienne F, Brot N, Matthews BW (2002) The mirrored methionine sulfoxide reductases of Neisseria gonorrhoeae pilB. Nat Struct Biol 9:348–352

    CAS  PubMed  Google Scholar 

  • Makarova KS, Ponomarev VA, Koonin EV (2001) Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Genome Biol 2 (9):research0033.1–0033.14

    Google Scholar 

  • Metanis N, Keinan E, Dawson PE (2006) Synthetic seleno-glutaredoxin 3 analogues are highly reducing oxidoreductases with enhanced catalytic efficiency. J Am Chem Soc 128:16684–16691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moskovitz J, Weissbach H, Brot N (1996) Cloning the expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins. Proc Natl Acad Sci U S A 93:2095–2099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moskovitz J, Poston JM, Berlett BS, Nosworthy NJ, Szczepanowski R, Stadtman ER (2000) Identification and characterization of a putative active site for peptide methionine sulfoxide reductase (MsrA) and its substrate stereospecificity. J Biol Chem 275:14167–14172

    Article  CAS  PubMed  Google Scholar 

  • Mulkidjanian AY, Galperin MY (2009) On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 4:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Muttenthaler M, Alewood PF (2008) Selenopeptide chemistry. J Pept Sci 14:1223–1239

    Article  CAS  PubMed  Google Scholar 

  • Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66:863–917

    Article  CAS  PubMed  Google Scholar 

  • Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN (2002) Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J 21:3681–3693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Book  Google Scholar 

  • Olry A, Boschi-Muller S, Marraud M, Sanglier-Cianferani S, Van Dorsselear A, Branlant G (2002) Characterization of the methionine sulfoxide reductase activities of PILB, a probable virulence factor from Neisseria meningitidis. J Biol Chem 277:12016–12022

    Article  CAS  PubMed  Google Scholar 

  • Olry A, Boschi-Muller S, Branlant G (2004) Kinetic characterization of the catalytic mechanism of methionine sulfoxide reductase B from Neisseria meningitidis. Biochemistry 43:11616–11622

    Article  CAS  PubMed  Google Scholar 

  • Olry A, Boschi-Muller S, Yu H, Burnel D, Branlant G (2005) Insights into the role of the metal binding site in methionine-R-sulfoxide reductases B. Protein Sci 14:2828–2837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panina EM, Mironov AA, Gelfand MS (2003) Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci U S A 100:9912–9917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearson RG, Sobel H, Songstad J (1968) Nucleophilic reactivity constants toward methyl iodide and trans-[Pt(Py)2cl2]. J Am Chem Soc 90:319

    Article  CAS  Google Scholar 

  • Perrier V, Surewicz WK, Glaser P, Martineau L, Craescu CT, Fabian H, Mantsch HH, Barzu O, Gilles AM (1994) Zinc chelation and structural stability of adenylate kinase from Bacillus subtilis. Biochemistry 33:9960–9967

    Article  CAS  PubMed  Google Scholar 

  • Ranaivoson FM, Neiers F, Kauffmann B, Boschi-Muller S, Branlant G, Favier F (2009) Methionine sulfoxide reductase B displays a high level of flexibility. J Mol Biol 394:83–93

    Article  CAS  PubMed  Google Scholar 

  • Roise D, Schatz G (1988) Mitochondrial presequences. J Biol Chem 263:4509–4511

    CAS  PubMed  Google Scholar 

  • Russel M, Model P (1986) The role of thioredoxin in filamentous phage assembly. Construction, isolation, and characterization of mutant thioredoxins. J Biol Chem 261:14997–15005

    CAS  PubMed  Google Scholar 

  • Sharov VS, Ferrington DA, Squier TC, Schoneich C (1999) Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase. FEBS Lett 455:247–250

    Article  CAS  PubMed  Google Scholar 

  • Shechter Y (1986) Selective oxidation and reduction of methionine residues in peptides and proteins by oxygen exchange between sulfoxide and sulfide. J Biol Chem 261:66–70

    CAS  PubMed  Google Scholar 

  • Shumilina E, Dobrovolska O, Del Conte R, Holen HW, Dikiy A (2014) Competitive cobalt for zinc substitution in mammalian methionine sulfoxide reductase B1 overexpressed in E.coli: structural and functional insight. J Biol Inorg Chem 19(1):85–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh VK, Moskovitz J (2003) Multiple methionine sulfoxide reductase genes in Staphylococcus aureus: expression of activity and roles in tolerance of oxidative stress. Microbiology 149:2739–2747

    Article  CAS  PubMed  Google Scholar 

  • Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Gao J, Ferrington DA, Biesiada H, Williams TD, Squier TC (1999) Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase. Biochemistry 38:105–112

    Article  CAS  PubMed  Google Scholar 

  • Truscott KN, Pfanner N, Voos W (2001) Transport of proteins into mitochondria. Rev Physiol Biochem Pharmacol 143:81–136

    Article  CAS  PubMed  Google Scholar 

  • Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659

    Article  CAS  PubMed  Google Scholar 

  • Vogt W (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18:93–105

    Article  CAS  PubMed  Google Scholar 

  • von Heijne G (1986a) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5:1335–1342

    Google Scholar 

  • von Heijne G (1986b) Towards a comparative anatomy of N-terminal topogenic protein sequences. J Mol Biol 189:239–242

    Article  Google Scholar 

  • von Heijne G (1990) Protein targeting signals. Curr Opin Cell Biol 2:604–608

    Article  Google Scholar 

  • Vougier S, Mary J, Friguet B (2003) Subcellular localization of methionine sulphoxide reductase A (MsrA): evidence for mitochondrial and cytosolic isoforms in rat liver cells. Biochem J 373:531–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitlow M, Howard AJ, Finzel BC, Poulos TL, Winborne E, Gilliland GL (1991) A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose. Proteins 9:153–173

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Yin D, Jas GS, Kuczer K, Williams TD, Schoneich C, Squier TC (1996) Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase. Biochemistry 35:2767–2787

    Article  CAS  PubMed  Google Scholar 

  • Yu HJ, Liu JQ, Bock A, Li J, Luo GM, Shen JC (2005) Engineering glutathione transferase to a novel glutathione peroxidase mimic with high catalytic efficiency. Incorporation of selenocysteine into a glutathione-binding scaffold using an auxotrophic expression system. J Biol Chem 280:11930–11935

    Article  CAS  PubMed  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

  • Zhang J (2012) Genetic redundancies and their evolutionary maintenance. In: Soyer OS (ed) Evolutionary systems biology, vol 751, Advances in experimental medicine and biology. Springer, New York, pp 279–300

    Chapter  Google Scholar 

  • Zhang Y, Gladyshev VN (2011) Comparative genomics of trace element dependence in biology. J Biol Chem 286:23623–23629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XH, Weissbach H (2008) Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Biol Rev Camb Philos Soc 83:249–257

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

AD acknowledges the support from NT Faculty, NTNU. ES acknowledges the NT Faculty, NTNU, for financial support through a post-doctoral fellowship. OD acknowledges the NT Faculty, NTNU, for financial support through a PhD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Dikiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shumilina, E., Dobrovolska, O., Dikiy, A. (2014). Evolution of Structural and Coordination Features Within the Methionine Sulfoxide Reductase B Family. In: Hohmann-Marriott, M. (eds) The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8742-0_11

Download citation

Publish with us

Policies and ethics