Skip to main content

Welfare and Diseases Under Culture Conditions

  • Chapter
  • First Online:
Book cover Cephalopod Culture

Abstract

This chapter reviews the welfare and diseases that have been reported since cephalopods are maintained, reared or cultured in captivity. Although cephalopod welfare is only going to be assured in terms of the European Union (EU) legislation from January 2013, it has long been enforced in other regions or countries all over the world. Pathologies registered under captive conditions derive, most of the times, from bad welfare practices. A revision of cephalopods’ immune system and the most important pathologies are presented, which are divided into viral, bacterial, fungal and parasitic pathogenic agents as well as chemical and mechanical damages. In addition, information regarding healing, antibiotics application and surgery is provided. Welfare under research and commercial culture conditions is discussed in terms of the use of anaesthesia and euthanasia agents and their assessment in terms of effectiveness. Further research on the different aspects considered is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abollo E, Gestal C, Pascual S (2001) Anisakis infestation in marine fish and cephalopods from Galician waters: an updated perspective. Parasitol Res 87:492–499

    Article  CAS  Google Scholar 

  • Alpuche J, Pereyra A, Mendoza-Hernández G et al (2010) Purification and partial characterization of an agglutinin from Octopus maya serum. Comp Biochem Physiol B: Biochem Mol Biol 156:1–5

    Google Scholar 

  • Anderson RC, Wood JB, Byrne RA (2002) Octopus senescence: the beginning of the end. J Appl Anim Welf Sci 5:275–283

    Article  CAS  Google Scholar 

  • Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235

    Article  Google Scholar 

  • Australian Capital Territory (2012) Animal welfare act 1992. In: Australian capital territory parliamentary counsel, p 123

    Google Scholar 

  • Bennett O (2005) The animal welfare bill, bill no 58 of 2005–06. In: House of commons, p 90

    Google Scholar 

  • Beuerlein K, Schipp R (1998) Cytomorphological aspects on the response of the branchial heart complex of Sepia officinalis L. (Cephalopoda) to xenobiotics and bacterial infection. Tissue Cell 30:662–671

    Article  CAS  Google Scholar 

  • Beuerlein K, Schimmelpfennig R, Westermann B et al (1998) Cytobiological studies on hemocyanin metabolism in the branchial heart complex of the common cuttlefish Sepia officinalis (Cephalopoda, Dibranchiata). Cell Tissue Res 292:587–595

    Article  CAS  Google Scholar 

  • Beuerlein K, Lohr S, Westermann B et al (2002a) Components of the cellular defense and detoxification system of the common cuttlefish Sepia officinalis (Mollusca, Cephalopoda). Tissue Cell 34:390–396

    Article  Google Scholar 

  • Beuerlein K, Ruth P, Westermann B et al (2002b) Hemocyanin and the branchial heart complex of Sepia officinalis: are the hemocytes involved in hemocyanin metabolism of coleoid cephalopods? Cell Tissue Res 310:373–381

    Article  Google Scholar 

  • Boyle PR (1991) The UFAW handbook on the care and management of the cephalopods in the laboratory. UFAW, Herts

    Google Scholar 

  • Broom DM (2008) Welfare assessment and relevant ethical decisions: key concepts. Annu Rev Biomed Sci 10:79–90

    Article  Google Scholar 

  • Castellanos-Martínez S, Gestal C (2013) Pathogens and immune-response of cephalopods. J Exp Mar Biol Ecol 447:14–22

    Google Scholar 

  • Castellanos-Martínez S, Prado-Alvarez M, Lobo-da-Cunha A et al (2014) Morphologic, cytometric and functional characterization of the common octopus (Octopus vulgaris) hemocytes. Dev Com Immunol 44:50–58

    Google Scholar 

  • Cheng TC (1975) Functional morphology and biochemistry of molluscan phagocytes. Ann Ny Acad Sci 266:343–379

    Article  CAS  Google Scholar 

  • Cheng TC (2000) Cellular defense mechanisms in oysters. In: Fingerman M, Nagabhushanam R (eds) Recent advances in marine biotechnology. Science Publishers Inc., U.K., pp 43–83

    Google Scholar 

  • Chu FL (2000) Defense mechanisms of marine bivalves. In: Fingerman M, Nagabhushanam R (eds) Recent advances in marine biotechnology. Science Publishers Inc., U.K., pp 1–42

    Google Scholar 

  • Claes MF (1996) Functional morphology of the white bodies of the cephalopod mollusc Sepia officinalis. Acta Zool-Stockholm 77:173–190

    Article  Google Scholar 

  • Cowden RR (1972) Some cytological and cytochemical observations on the leucopoietic organs, the “white bodies” of Octopus vulgaris. J Inv Pathol 19:113–119

    Article  Google Scholar 

  • Devauchelle G, Vago C (1971) Particulles d’allure virale dans les cellules de l’estomac de la seiche, Sepia officinalis L. (Mollusques, Céphalopodes). C. r. hebd. Séanc. Acad Sci Paris 272:894–896

    CAS  Google Scholar 

  • Ellis T, Yildiz H, López-Olmeda J et al (2012) Cortisol and finfish welfare. Fish Physiol Biochem 38:163–188

    Article  CAS  Google Scholar 

  • Estefanell J, Socorro J, Afonso JM et al (2011) Evaluation of two anaesthetic agents and the passive integrated transponder tagging system in Octopus vulgaris (Cuvier 1797). Aquac Res 42:399–406

    Article  Google Scholar 

  • European Union (2010) Directive 2010/63/EU of The European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of European Union, pp 33–79

    Google Scholar 

  • Farto R, Armada SP, Montes M et al (2003) Vibrio lentus associated with diseased wild octopus (Octopus vulgaris). J Inv Pathol 83:149–156

    Article  CAS  Google Scholar 

  • Feral JP (1978) Regeneration of arms of Cuttlefish Sepia officinalis L (Cephalopoda, Sepioidea): 1—morphological study. Cahiers De Biologie Marine 19:355–361

    Google Scholar 

  • Feral JP (1979) Regeneration of the arms of Sepia officinalis L (Cephalopoda, Sepioidea): 2—histologic and cytologic study. Cahiers De Biologie Marine 20:29–42

    Google Scholar 

  • Feral JP (1988) Wound-healing after arm amputation in Sepia officinalis (Cephalopoda, Sepioidea). J Inv Pathol 52:380–388

    Article  Google Scholar 

  • Fiedler A (1992) The role of venous filling pressure in autoregulation of the branchial hearts of Sepia officinalis L (Cephalopoda). Zool Jahrb Allg Zool 96:265–278

    Google Scholar 

  • Fiedler A, Schipp R (1987) The role of the branchial heart complex in circulation of coleoid cephalopods. Experientia 43:544–553

    Article  Google Scholar 

  • Fiedler A, Schipp R (1991) Localization of catecholamine-containing nerve-fibers in the branchial heart and cardiac ganglion of the common cuttlefish Sepia officinalis L (Cephalopoda). Tissue Cell 23:813–819

    Article  CAS  Google Scholar 

  • Fisher WS, Di Nuzzo AR (1991) Agglutination of bacteria and erythrocytes by serum from six species of marine molluscs. J Inv Pathol 57:380–394

    Article  CAS  Google Scholar 

  • Ford LA (1992) Host defense mechanisms of cephalopods. Annu Rev Fish Diseases 2:25–40

    Article  Google Scholar 

  • Ford LA, Alexander SK, Cooper KM et al (1986) Bacterial populations of normal and ulcerated mantle tissue of the squid, Lolliguncula brevis. J Inv Pathol 48:13–26

    Article  CAS  Google Scholar 

  • Forsythe JW, Hanlon RT, Lee PG (1987) A synopsis of cephalopod pathology in captivity. In: Williams TD (ed) 18th annual conference of the international association for aquatic animal medicine. Monterey bay aquarium, Monterey, California, pp 130–135

    Google Scholar 

  • Forsythe JW, Hanlon RT, Lee PG (1990) A formulary for treating cephalopod mollusc diseases. In: Perkins FO, Cheng TC (eds) Third international colloquium on pathology in marine aquaculture, Gloucester Point, Virginia (USA), 2–6 October 1988, Academic Press Inc., pp 51–63

    Google Scholar 

  • Furuya H, Ota M, Kimura R et al (2004) Renal organs of cephalopods: A habitat for dicyemids and chromidinids. J Morphol 262:629–643

    Article  Google Scholar 

  • Gestal C, Abollo E, Pascual S (1998) Rickettsiales-like organisms in the gills of reared Octopus vulgaris (Mollusca, Cephalopoda). Bull Eur Assoc Fish Pathol 18:13–14

    Google Scholar 

  • Gestal C, Belcari P, Abollo E et al (1999) Parasites of cephalopods in the northern Tyrrhenian Sea (western Mediterranean): new host records and host specificity. Scientia Marina 63:39–43

    Article  Google Scholar 

  • Gestal C, Guerra A, Pascual S et al (2002) On the life cycle of Aggregata eberthi and observations on Aggregata octopiana (Apicomplexa, Aggregatidae) from Galicia (NE Atlantic). Eur J Protistol 37:427–435

    Article  Google Scholar 

  • Gestal C, Guerra A, Pascual S (2007) Aggregata octopiana (Protista: Apicomplexa): a dangerous pathogen during commercial Octopus vulgaris ongrowing. ICES Mar Sci 64:1743–1748

    Article  CAS  Google Scholar 

  • Gonçalves RA, Frias PA, Aragão C et al (2012) The use of different anaesthetics as welfare promoters during short-term human manipulation of European cuttlefish (Sepia officinalis) juveniles. Aquaculture 370:130–135

    Article  Google Scholar 

  • Hanley JS, Shashar N, Smolowitz R et al (1998) Modified laboratory culture techniques for the European cuttlefish Sepia officinalis. Biol Bull 195:223–225

    Article  CAS  Google Scholar 

  • Hanlon RT, Forsythe JW (1990a) Diseases caused by microorganisms. In: Kinnie O (ed) Diseases of Mollusca: Cephalopoda. Biologische Anstalt Helgoland, Hamburg, pp 23–46

    Google Scholar 

  • Hanlon RT, Forsythe JW (1990b) Structural abnormalities and neoplasia. In: Kinnie O (ed) Diseases of marine animals. Biologische Anstalt Helgoland, Hamburg, pp 203–204

    Google Scholar 

  • Hanlon RT, Hixon RF, Hulet WH (1983) Survival, growth, and behaviour of the loliginid squids Loligo plei, Loligo pelaei, and Lolliguncula brevis (Mollusca: Cephalopoda) in closed seawater systems. Biol Bull 165:637–685

    Article  Google Scholar 

  • Hanlon RT, Forsythe JW, Cooper KM et al (1984) Fatal penetrating skin ulcers in laboratory-reared octopuses. J Inv Pathol 44:67–83

    Article  CAS  Google Scholar 

  • Hanlon RT, Forsythe JW, Lee PG (1988) External pathologies of cephalopods in captivity. In: Perkins FO, Cheng TC (eds) Third international colloquium on pathology in marine aquaculture. Academic Press Inc., Gloucester Point, Virginia (USA), 2–6 October 1988, pp 17–18

    Google Scholar 

  • Hanlon RT, Yang WT, Turk PE et al (1989) Laboratory culture and estimated life span of the Eastern Atlantic squid, Loligo forbesi Steenstrup, 1856 (Mollusca: Cephalopoda). Aquacult Fish Manag 20:15–34

    Google Scholar 

  • Harms CA, Lewbart GA, Mcalarney R et al (2006) Surgical excision of mycotic (Cladosporium sp.) granulomas from the mantle of a cuttlefish (Sepia officinalis). J Zoo Wildlife Med 37:524–530

    Article  Google Scholar 

  • Harvey-Clark C (2011) IACUC challenges in invertebrate research. ILAR J 52(2):213–220

    Article  CAS  Google Scholar 

  • Hochberg FG (1982) The “kidneys” of cephalopods: a unique habitat for parasites. Malacologia 23:121–134

    Google Scholar 

  • Hochberg FG (1990) Diseases of Mollusca: Cephalopoda. In: Kinne O (ed) Diseases of marine animals. Biologisches Anstalt Helgoland, Hamburg, pp 47–227

    Google Scholar 

  • Houlihan DF, Mcmillan DN, Agnisola C et al (1990) Protein synthesis and growth in Octopus vulgaris. Mar Biol 106:251–259

    Article  CAS  Google Scholar 

  • Jacklet JW (1997) Nitric oxide signaling in invertebrates. Invert Neurosci 3:1–14

    Article  CAS  Google Scholar 

  • Kittilsen S, Ellis T, Schjolden J et al (2009) Determining stress-responsiveness in family groups of Atlantic salmon (Salmo salar) using non-invasive measures. Aquaculture 298:146–152

    Article  Google Scholar 

  • Malham SK, Runham NW (1998) A brief review of the immunobiology of Eledone cirrhosa. South African J Mar Sci 20:385–391

    Article  Google Scholar 

  • Malham S, Runham NW, Secombes CJ (1997) Phagocytosis by haemocytes from the lesser octopus Eledone cirrhosa. Iberus 15:1–11

    Google Scholar 

  • Malham SK, Runham NW, Secombes CJ (1998) Lysozyme and antiprotease activity in the lesser octopus Eledone cirrhosa (Lam.) (Cephalopoda). Develop Comp Immunol 22:27–37

    Article  CAS  Google Scholar 

  • Malham SK, Lacoste A, Gelebart F et al (2002) A first insight into stress-induced neuroendocrine and immune changes in the octopus Eledone cirrhosa. Aquat Living Resour 15:187–192

    Article  Google Scholar 

  • Martínez-Porchas M, Martínez-Córdova LR, Ramos-Enriquez R (2009) Cortisol and glucose: reliable indicators of fish stress? Pan-American J Aquatic Sci 4(2):158–178

    Google Scholar 

  • Mather JA, Anderson RC (2007) Ethics and invertebrates: a cephalopod perspective. Diseases Aquatic Org 75:119–129

    Article  Google Scholar 

  • Mcfall-Ngai M (2007) Adaptive immunity: care for the community. Nature 445:153–153

    Article  CAS  Google Scholar 

  • Mcfall-Ngai M, Nyholm SV, Castillo MG (2010) The role of the immune system in the initiation and persistence of the Euprymna scolopesVibrio fischeri symbiosis. Semin Immunol 22:48–53

    Article  CAS  Google Scholar 

  • Mclean N, Hochberg FG, Shinn GL (1987) Giant protistan parasites on the gills of cephalopods (Mollusca). Diseases Aquatic Org 3:119–125

    Article  Google Scholar 

  • Moltschaniwskyj NA, Hall K, Marian JEAR et al (2007) Ethical and welfare considerations when using cephalopods as experimental animals. Rev Fish Biol Fish 17:455–476

    Article  Google Scholar 

  • Nyholm SV, Mcfall-Ngai M (2004) The winnowing: establishing the squid-vibrio symbiosis. Nat Rev Micro 2:632–642

    Article  CAS  Google Scholar 

  • Nyholm SV, Stewart JJ, Ruby EG et al (2009) Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environm Microbiol 11:483–493

    Article  Google Scholar 

  • Oestmann DJ, Scimeca JM, Forsythe J et al (1997) Special considerations for keeping cephalopods in laboratory facilities. Contemp Topics Lab Anim Sci 36:89–93

    CAS  Google Scholar 

  • Ohl F, Van Der Staay FJ (2012) Animal welfare: at the interface between science and society. Vet J 192:13–19

    Article  CAS  Google Scholar 

  • Pascual S, Gestal C, Estevez JM et al (1996) Parasites in commercially-exploited cephalopods (Mollusca, Cephalopoda) in Spain: an updated perspective. Aquaculture 142:1–10

    Article  Google Scholar 

  • Pottinger TG (2008) The stress response in fish—mechanism, effects and measurement. In: Branson EJ (ed) Fish welfare. Blackwell, Oxford, pp 32–48

    Google Scholar 

  • Rodríguez-Domínguez H, Soto-Búa M, Iglesias-Blanco R et al (2006) Preliminary study on the phagocytic ability of Octopus vulgaris Cuvier, 1797 (Mollusca: Cephalopoda) haemocytes in vitro. Aquaculture 254:563–570

    Article  Google Scholar 

  • Rohrbach B, Schmidtberg H (2006) Sepia arms and tentacles: Model systems for studying the regeneration of brachial appendages. Vie Milieu 56:175–190

    Google Scholar 

  • Ross LG, Ross B (1984) Anaesthetic and sedative techniques for fish. Institute of Aquaculture—University of Stirling, Stirling

    Google Scholar 

  • Rungger D, Rastelli M, Braendle E et al (1971) A viruslike particle associated with lesions in the muscles of Octopus vulgaris. J Invertebrate Pathol 17:72–80

    Article  Google Scholar 

  • Russell WM, Burch RI, Hume CW (1992) Principles of human experimental technique. Universities Federation for Animal Welfare (UFAW), Wheathampstead

    Google Scholar 

  • Schipp R (1987a) General morphological and functional characteristics of the cephalopod circulatory system. An introduction. Experientia 43:474–477

    Article  Google Scholar 

  • Schipp R (1987b) The blood vessels of Cephalopods. A comparative morphological and functional survey. Experientia 43:525–537

    Article  Google Scholar 

  • Seol D-W, Lee J, Im S-Y et al (2007) Clove oil as an anaesthetic for common octopus (Octopus minor, Sasaki). Aquac Res 38:45–49

    Article  CAS  Google Scholar 

  • Sherrill J, Spelman LH, Reidel CL et al (2000) Common cuttlefish (Sepia officinalis) mortality at the national zoological park: implications for clinical management. J Zoo Wildlife Med 31:523–531

    CAS  Google Scholar 

  • Stoskopf MK, Nevy S, Flynn S (1987) Treatment of ulcerative mantle disease due to Pseudomonas spp. In: Octopus dofleini and Octopus bimaculoides with oxytetracycline. In: Annual meeting of the international association of aquatic animal medicine, Monterey, California

    Google Scholar 

  • Sykes AV, Domingues PM, Correia M et al (2006) Cuttlefish culture—State of the art and future trends. Vie Milieu 56:129–137

    Google Scholar 

  • Sykes AV, Baptista FD, Gonçalves RA et al (2012) Directive 2010/63/EU on animal welfare: a review on the existing scientific knowledge and implications in cephalopod aquaculture research. Rev Aquacult 4:142–162

    Article  Google Scholar 

  • Versen B, Gokorsch S, Lücke J et al (1997) Auricular-ventricular interacting mechanisms in the systemic heart of the cuttlefish Sepia Officinalis L. (Cephalopoda). Vie Milieu 47:123–130

    Google Scholar 

  • Wells MJ, Smith PJS (1987) The performance of the octopus circulatory system: A triumph of engineering over design. Experientia 43:487–499

    Article  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António V. Sykes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sykes, A., Gestal, C. (2014). Welfare and Diseases Under Culture Conditions. In: Iglesias, J., Fuentes, L., Villanueva, R. (eds) Cephalopod Culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8648-5_6

Download citation

Publish with us

Policies and ethics