Skip to main content

Nutrition as a Key Factor for Cephalopod Aquaculture

  • Chapter
  • First Online:

Abstract

Cephalopods are fast-growing animals, active swimmers and top predators, which require substantial amounts of food. As such, they show high metabolic rates dependent on a carnivorous diet, thus hypothetically linked to a predominant amino acid metabolism. Their body composition is mainly constituted by high levels of total protein, and their lipids, although quantitatively low, reveal the presence of substantial amounts of long-chain polyunsaturated fatty acids. All in all, little is known about their nutritional requirements, especially during the early stages, very prone to high mortalities under culture. This chapter is a brief account of key information concerning relevant points linked to the nutritional requirements that cephalopods have for proteins, lipids, carotenoids, carbohydrates, minerals and vitamins. Moreover, some considerations on populational metabolism are also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almansa E, Domingues P, Sykes A et al (2006) The effects of feeding with shrimp or fish fry on growth and mantle lipid composition of juvenile and adult cuttlefish (Sepia officinalis). Aquaculture 256:403–413

    CAS  Google Scholar 

  • André J, Grist EPM, Semmens JM et al (2009) Effects of temperature on energetics and the growth pattern of benthic octopuses. Mar Ecol Prog Ser 374:167–179

    Google Scholar 

  • Andrés M, Estévez A, Simeó CG et al (2010) Annual variation in the biochemical composition of newly hatched larvae of Maja brachydactyla in captivity. Aquaculture 310:99–105

    Google Scholar 

  • Aragão C, Conceição LEC, Dinis MT et al (2004) Amino acid pools of rotifers and Artemia under different conditions: Nutritional implications for fish larvae. Aquaculture 234:429–445

    Google Scholar 

  • Baldwin J, Fields JHA, Hochachka PW (1976) Role of octopine dehydrogenase in energy-metabolism of cephalopods. Proc Australian Biochem Soc 9:5–5

    Google Scholar 

  • Ballantyne JS (2004) Mitochondria: aerobic and anaerobic design—lessons from molluscs and fishes. Comp Biochem Physiol B 139:461–467

    Google Scholar 

  • Ballantyne JS, Hochachka PW, Mommsen TP (1981) Studies on the metabolism of the migratory squid, Loligo opalescens—enzymes of tissues and heart-mitochondria. Mar Biol Let 2:75–85

    CAS  Google Scholar 

  • Barnabé G (1996) Bases Biologiques et Écologiques de l’Aquaculture. Editorial Acribia SA, Zaragoza

    Google Scholar 

  • Beuerlein K, Ruth P, Scholz FR et al (2004) Blood cells and the biosynthesis of hemocyanin in Sepia embryos. Micron 35:115–116

    CAS  Google Scholar 

  • Blanchier B (1981) Etude des lipides totaux et des steroides dans la glande digestive et la gonade chez la seiche Sepia officinalis L. (Mollusque, Cephalopode). Université de Caen, France

    Google Scholar 

  • Boletzky SV (1974) Effects of continuous malnutrition on development of cuttlebone in Sepia officinalis L (Mollusca, Cephalopoda). Bull Soc Zool France—Evol Zool 99:667–673

    Google Scholar 

  • Bouchaud O (1991) Energy consumption of the cuttlefish Sepia officinalis L. (Mollusca: Cephalopoda) during embryonic development, preliminary results. Bull Mar Sci 49:333–340

    Google Scholar 

  • Bouchaud O, Galois R (1990) Utilization of egg-yolk lipids during the embryonic development of Sepia officinalis L. in relation to temperature of the water. Comp Bioch Physio 97B:611–615

    CAS  Google Scholar 

  • Boucaud-Camou E (1969) Localization of amylase and protease activities in digestive system of Sepia officinalis L. Cr Acad Sci D Nat 269:2564–2566

    CAS  Google Scholar 

  • Boucaud-Camou E (1974) Localisation d’activités enzymatiques impliquées dans la digestion chez Sepia officinalis L. Arch Zool Exp Gén 115:5–27

    Google Scholar 

  • Boucaud-Camou E (1989) L’aquaculture des cephalopodes: evaluation et perspectives. Haliotis 19:201–214

    Google Scholar 

  • Boucaud-Camou E (1990) La seiche, un animal d’avenir. Peche Maritime 69:321–329

    Google Scholar 

  • Boucaud-Camou E, Yim M, Tresgot A (1985) Feeding and digestion of young Sepia officinalis L. (Mollusca: Cephalopoda) during post-hatching development. Vie Milieu 35:263–266

    Google Scholar 

  • Boucher-Rodoni R, Mangold K (1994) Ammonia production in cephalopods, physiological and evolutionary aspects. Mar Freshw Behav Physiol 25:53–60

    Google Scholar 

  • Boucher-Rodoni R, Boucaud-Camou E, Mangold K (1987) Feeding and digestion. In: Boyle PR (ed) Cephalopod Life Cycles. Academic Press London, p 85–108

    Google Scholar 

  • Brown MR, Battaglene SC, Morehead DT, Brock M (2005) Ontogenetic changes in amino acid and vitamins during early larval stages of striped trumpeter (Latris lineata). Aquaculture 248:263–274

    CAS  Google Scholar 

  • Bustamante P, Teyssie JL, Danis B et al (2004) Uptake, transfer and distribution of silver and cobalt in tissues of the common cuttlefish Sepia officinalis at different stages of its life cycle. Mar Ecol—Progr Ser 269:185–195

    CAS  Google Scholar 

  • Carter CG, Lynch KA, Moltschaniwskyj NA (2009) Protein synthesis in a solitary benthic cephalopod, the Southern dumpling squid (Euprymna tasmanica). Comp Biochem Physio A: Mol Int Physiol 153:185–190

    Google Scholar 

  • Castro BG, Garrido JL, Sotelo CG (1992) Changes in composition of digestive gland and mantle muscle of the cuttlefish Sepia officinalis during starvation. Mar Biol 114:11–20

    CAS  Google Scholar 

  • Castro BG, Dimarco FP, Derusha RH et al (1993) The effects of surimi and pelleted diets on the laboratory survival, growth, and feeding rate of the cuttlefish Sepia officialis L. J Exp Mar Biol Ecol 170:241–252

    Google Scholar 

  • Cho SY, Joo DS, Choi HG, Nara E, Miyashita K (2001) Oxidative stability of lipids from squid tissues. Fish Sci 67:738–743

    CAS  Google Scholar 

  • Conceição LEC, Grasdalen H, Ronnestad I (2003) Amino acid requirements of fish larvae and post-larvae: new tools and recent findings. Aquaculture 227:221–232

    Google Scholar 

  • Conceição L, Aragão C, Ronnestad I (2010) Protein metabolism and amino acid requirements in fish larvae. In: Cruz-Suarez LE, Ricque-Marie D, Tapia-Salazar M, Nieto-López MG, Villarreal-Cavazos DA, Gamboa-Delgado J (eds) Avances en Nutrición Acuícola X—Memorias del Décimo Simposio Internacional de Nutrición Acuícola. Monterrey, México, p 250–263

    Google Scholar 

  • D’Aniello A, Strazzullo L, D’Onofrio G, Pischetola M (1986) Electrolytes and nitrogen compounds of body fluids and tissues of Octopus vulgaris Lam. J Comp Physiol 156:503–509

    Google Scholar 

  • De Eguileor ML, Grimaldi A et al (2000) Integumental amino acid uptake in a carnivorous predator mollusc (Sepia officinalis, Cephalopoda). Tissue Cell 32:389–398

    Google Scholar 

  • Decleir W, Richard A (1970) A study of the blood proteins in Sepia officinalis L. with special reference to embryonic hemocyanin. Comp Biochem Physiol 34:203–211

    CAS  Google Scholar 

  • Decleir W, Richard A (1972) A study of the orange-red pigment from the accessory nidamental glands of the cephalopod Sepia officinalis L. Biol Jb Dodonaea 40:188–197

    Google Scholar 

  • Decleir W, Lemaire J, Richard A (1971) The differentiation of blood proteins during ontogeny in Sepia officinalis L. Comp Biochem Physiol 40B:923–930

    Google Scholar 

  • Decleir W, Vlaeminck A, Geladi P et al (1978) Determination of protein-bound copper and zinc in some organs of the cuttlefish Sepia officinalis L. Comp Biochem Physiol 60B:347–350

    CAS  Google Scholar 

  • Domingues P, Poirier R, Dickel L et al (2003) Effects of culture density and live prey on growth and survival of juvenile cuttlefish, Sepia officinalis. Aquac Int 11:225–242

    Google Scholar 

  • Domingues P, Sykes A, Sommerfield A et al (2004) Growth and survival of cuttlefish (Sepia officinalis) of different ages fed crustaceans and fish. Effects of frozen and live prey. Aquaculture 229:239–254

    Google Scholar 

  • Domingues PM, Dimarco FP, Andrade JP et al (2005) Effect of artificial diets on growth, survival and condition of adult cuttlefish, Sepia officinalis Linnaeus, 1758. Aquac Int 13:423–440

    CAS  Google Scholar 

  • Domingues P, Marquez L, López N et al (2009) Effects of food thermal treatment on growth, absorption, and assimilation efficiency of juvenile cuttlefish, Sepia officinalis. Aquac Int 17:283–299

    CAS  Google Scholar 

  • Dunstan GA, Baillie HJ, Barrett SM, Volkman JK (2006) Effect of diet on the lipid composition of wild and cultured abalone. Aquaculture 140:115–127

    Google Scholar 

  • Durazo-Beltrán E, D’Abramo LR, Toro-Vazquez JF et al (2003) Effect of triacylglycerols in formulated diets on growth and fatty acid composition in tissue of green abalone (Haliotis fulgens). Aquaculture 224:257–270

    Google Scholar 

  • Ferreira A, Marquez L, Almansa E et al (2010) The use of alternative diets to culture juvenile cuttlefish, Sepia officinalis: effects on growth and lipid composition. Aquac Nut 16:262–275

    CAS  Google Scholar 

  • Finn PF, Dice JF (2006) Proteolytic and lipolytic responses to starvation. Nutrition 22:830–844

    CAS  Google Scholar 

  • Fisher LR, Kon SK, Thompson SY (1956) Vitamin A and carotenoids in certain invertebrates. V Mollusca: Cephalopoda. J Mar Biol Assoc UK 35:63–80

    Google Scholar 

  • Fluckiger M, Jackson GD, Nichols P et al (2008) An experimental study of the effect of diet on the fatty acid profiles of the European cuttlefish (Sepia officinalis). Mar Biol 154:363–372

    CAS  Google Scholar 

  • Fox DL (1966) Pigmentation of Molluscs. In: Yonge CM (ed) Physiology of Mollusca. Academic Press Inc., New York, p 240–273

    Google Scholar 

  • García-García B, Cerezo-Valverde J (2006) Optimal proportions of crabs and fish in diet for common octopus (Octopus vulgaris) ongrowing. Aquaculture 253:502–511

    Google Scholar 

  • García-Garrido S, Hachero-Cruzado I, Rosas C et al (2012) Protein and amino acid composition from the mantle of juvenile Octopus vulgaris exposed to prolonged starvation. Aquac Res 44:1741­–1751

    Google Scholar 

  • Grigoriou P, Richardson CA (2009) Effect of body mass, temperature and food deprivation on oxygen consumption rate of common cuttlefish Sepia officinalis. Mar Biol 156:2473–2481

    Google Scholar 

  • Guinot D, Monroig Ó, Navarro JC et al (2013). Enrichment of Artemia metanauplii in phospholipids and essential fatty acids as a diet for common octopus (Octopus vulgaris) paralarvae. Aquac Nut 19:837–844

    Google Scholar 

  • Ghiretti F (1966) Molluscan hemocyanins. In: Wilbur KM, Yonge CM (eds) Physiology of Mollusca, vol II. Academic Press, London

    Google Scholar 

  • Halver JE (2002) The vitamins In: Halver JE, Hardy RW (eds) Fish Nutrition, 3rd edn. Academic Press, San Diego, p 61–141

    Google Scholar 

  • Hanlon RT (1987) Mariculture. In: Cephalopod Life Cycles. Academic Press Inc., London

    Google Scholar 

  • Hanlon RT, Bidwell JP, Tait R (1989) Strontium Is required for statolith development and thus normal swimming behavior of hatchling cephalopods. J Exp Biol 141:187–195

    CAS  Google Scholar 

  • Hanlon RT, Turk PE, Lee PG (1991) Squid and cuttlefish mariculture: an updated perspective. J Ceph Biol 2:31–40

    Google Scholar 

  • Hewitt RA (1975) Analysis of aragonite from cuttlebone of Sepia officinalis L. Mar Geol 18:M1–M5

    CAS  Google Scholar 

  • Hochachka PW (1994) Oxygen efficient design of cephalopod muscle metabolism. Mar Fresh Behav Physiol 25:61–67

    Google Scholar 

  • Hochachka PW, Fields JHA (1982) Arginine, glutamate, and proline as substrates for oxidation and for glycogenesis in cephalopod tissues. Pac Sci 36:325–335

    CAS  Google Scholar 

  • Hochachka PW, Hartline PH, Fields JHA (1976) Octopine as an end product of anaerobic glycolysis in the chambered nautilus. Science 195:72–74

    Google Scholar 

  • Hochachka PW, Mommsen TP, Storey J et al (1983) The relationship between arginine and proline metabolism in cephalopods. Mar Biol Lett 4:1–21

    CAS  Google Scholar 

  • Hormiga JA, Almansa E, Sykes AV et al (2010) Model based optimization of feeding regimens in aquaculture: Application to the improvement of Octopus vulgaris viability in captivity. J Biotechnol 149:209–214

    CAS  Google Scholar 

  • Houlihan DF, Mcmillan DN, Agnisola C et al (1990) Protein synthesis and growth in Octopus vulgaris. Mar Biol 106:251–259

    CAS  Google Scholar 

  • Hunt S, Nixon M (1981) A comparative study of protein composition in the chitin-protein complexes of the beak, pen, sucker disk, radula and esophageal cuticle of cephalopods. Comp Biochem Physiol B 68:535–546

    Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    CAS  Google Scholar 

  • Ito Y, Fujii T (1962) Chemical composition of the egg-yolk lipoproteins. J Biochem 52:221–222

    CAS  Google Scholar 

  • Ito Y, Fujii T, Otake M (1962) On peptide constituent of the egg-yolk lipoproteins. J Biochem 52:223–225

    CAS  Google Scholar 

  • Koueta N, Le CA, Noel B et al (2000) Changes of digestive enzymes during growth of cultured juvenile cuttlefish Sepia officinalis L. (Mollusca Cephalopoda). Effect of enriched diet and ration. In: ICES (ed) ICES Annual Science Conference. Brugge, Belgium, p 17

    Google Scholar 

  • Koueta N, Boucaud-Camou E, Noel B (2002) Effect of enriched natural diet on survival and growth of juvenile cuttlefish Sepia officinalis L. Aquaculture 203:293–310

    Google Scholar 

  • Koueta N, Alorend E, Noel B et al (2006) Earlier acceptance of frozen prey by juvenile cuttlefish Sepia officinalis in experimental rearing: effect of previous enriched natural diet. Vie Milieu 56:147–152

    Google Scholar 

  • Kreuzer R (1984) Cephalopods: handling, processing and products. FAO Fish Tech Pap 254:108

    Google Scholar 

  • Lacoue-Labarthe T, Warnau A, Oberhansli F et al (2008a) Differential bioaccumulation behaviour of Ag and Cd during the early development of the cuttlefish Sepia officinalis. Aquat Toxicol 86:437–446

    CAS  Google Scholar 

  • Lacoue-Labarthe T, Warnau M, Oberhansli F et al (2008b) First experiments on the maternal transfer of metals in the cuttlefish Sepia officinalis. Mar Pollut Bull 57:826–831

    CAS  Google Scholar 

  • Lacoue-Labarthe T, Warnau M, Metian M et al (2009) Biokinetics of Hg and Pb accumulation in the encapsulated egg of the common cuttlefish Sepia officinalis: Radiotracer experiments. Sci Total Environm 407:6188–6195

    CAS  Google Scholar 

  • Lacoue-Labarthe T, Le Bihan E, Borg D et al (2010a) Acid phosphatase and cathepsin activity in cuttlefish (Sepia officinalis) eggs: the effects of Ag, Cd, and Cu exposure. ICES J Mar Sci 67:1517–1523

    Google Scholar 

  • Lacoue-Labarthe T, Warnau M, Oberhansli F et al (2010b) Contrasting accumulation biokinetics and distribution of Am-241, Co, Cs, Mn and Zn during the whole development time of the eggs of the common cuttlefish, Sepia officinalis. J Exp Mar Biol Ecol 382:131–138

    CAS  Google Scholar 

  • Lamarre SG, Ditlecadet D, Mckenzie DJ et al (2012) Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis. Am J Physiol-Reg I 303:R427–R437

    CAS  Google Scholar 

  • Le Bihan E, Perrin A, Koueta N (2006) Influence of diet peptide content on survival, growth and digestive enzymes activities of juvenile cuttlefish Sepia officinalis. Vie Milieu 56:139–145

    Google Scholar 

  • Lee PG (1994) Nutrition of cephalopods: fueling the system. Mar Fresh Behav Physiol 25:35–51

    CAS  Google Scholar 

  • Liñán-Cabello MA, Paniagua-Michel J, Hopkins PM (2002) Bioactive roles of carotenoids and retinoids in crustaceans. Aquac Nut 8:299–309

    Google Scholar 

  • Lourenço HM, Anacleto P, Afonso C et al (2009) Elemental composition of cephalopods from Portuguese continental waters. Food Chem 113:1146–1153

    Google Scholar 

  • Mark F, Melzner F, Bock C et al (2008) Thermal effects on cephalopod energy metabolism—a case study for Sepia officinalis. Comp Biochem Physiol A 150:S171–S171

    Google Scholar 

  • McCue MD (2010) Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A 156:1–18

    Google Scholar 

  • Miliou H, Fintikaki M, Tzitzinakis M et al (2006) Fatty acid composition of the common octopus, Octopus vulgaris, in relation to rearing temperature and body weight. Aquaculture 256:311–322

    CAS  Google Scholar 

  • Miyazaki T, Nakahara M, Ishii T et al (2001) Accumulation of cobalt in newly hatched octopus, Octopus vulgaris. Fish Sci 67:170–172

    CAS  Google Scholar 

  • Moltschaniwskyj N, Johnston D (2006) Evidence that lipid can be digested by the dumpling squid Euprymna tasmanica, but is not stored in the digestive gland. Mar Biol 149:565–572

    CAS  Google Scholar 

  • Moltschaniwskyj NA, Carter CG (2010) Protein synthesis, degradation, and retention: mechanisms of indeterminate growth in cephalopods. Physiol Biochem Zool: PBZ 83:997–1008

    CAS  Google Scholar 

  • Moltschaniwskyj MA, Carter CG (2013) The adaptive response of protein turnover to the energetic demands of reproduction in a cephalopod. Physiol Biochem Zool 86:119–126

    CAS  Google Scholar 

  • Mommsen TP, French CJ, Emmett B et al (1982) The fate of arginine and proline carbon in squid tissues. Pac Sci 3:343–348

    Google Scholar 

  • Monroig Ó,G, Hontoria F et al (2012a) Biosynthesis of essential fatty acids in Octopus vulgaris (Cuvier, 1797): Molecular cloning, functional characterization and tissue distribution of a fatty acyl elongase. Aquaculture 360–361:45–53

    Google Scholar 

  • Monroig Ó,N, Dick JR et al (2012b) Identification of a Δ5-like fatty acyl desaturase from the cephalopod Octopus vulgaris (Cuvier 1797) involved in the biosynthesis of essential fatty acids. Mar Biotech 14:411–422

    CAS  Google Scholar 

  • Morais S, Conceição L, Dinis MT, Rønnestad I (2004) A method for radiolabeling Artemia with applications in studies of food intake, digestibility, protein and amino acid metabolism in larval fish. Aquaculture 231:469–487

    CAS  Google Scholar 

  • Morillo-Velarde PS, Cerezo Valverde J, Serra Llinares RM et al (2011) Energetic contribution of carbohydrates during starvation in common octopus (Octopus vulgaris). J Mollusc Stud 77:318–320

    Google Scholar 

  • Morillo-Velarde PS, Cerezo Valverde J, Hernández MD et al (2012) Growth and digestibility of formulated diets based on dry and freeze-dried ingredients in the common octopus (Octopus vulgaris). Aquaculture 368–369:139–144

    Google Scholar 

  • Motoe K, Ooizumi T, Hayashi S, Kawasaki K (1997) Seasonal changes in the contents of proximate composition, minerals and vitamins of firefly squid. J Jpn Soc Food Sci Tech 44:133–139

    CAS  Google Scholar 

  • Napoleão P, Pinheiro T, Reis CS (2005a) Elemental characterization of tissues of Octopus vulgaris along the Portuguese coast. Sci Total Environm 345:41–49

    Google Scholar 

  • Napoleão P, Reis CS, Alves LC et al (2005b) Morphologic characterization and elemental distribution of Octopus vulgaris Cuvier, 1797 vestigial shell. Nuclear Instrum Meth Physic Research B 231:345–349

    Google Scholar 

  • Navarro JC, Villanueva R (2000) Lipid and fatty acid composition of early stages of cephalopods: an approach to their lipid requirements. Aquaculture 183:161–177

    CAS  Google Scholar 

  • Navarro JC, Villanueva R (2003) The fatty acid composition of Octopus vulgaris paralarvae reared with live and inert food: deviation from their natural fatty acid profile. Aquaculture 219:613–631

    CAS  Google Scholar 

  • O’Dor RK, Mangold K, Boucher-Rodoni R et al (1984) Nutrient absorption, storage and remobilization in Octopus vulgaris. Marine Behavioral Physiology 11:239–258

    Google Scholar 

  • O’Dor RK, Wells MJ (1987) Energy and nutrient flow. In: Boyle PR (ed) Cephalopod life cycles. Academic Press, London, p 109–133

    Google Scholar 

  • Oellermann M, Portner HO, Mark FC (2012) Mitochondrial dynamics underlying thermal plasticity of cuttlefish (Sepia officinalis) hearts. J Exp Biol 215:2992–3000

    CAS  Google Scholar 

  • Okumura S, Kurihara A, Iwamoto A et al (2005) Improved survival and growth in Octopus vulgaris paralarvae by feeding large type Artemia and Pacific sandeel, Ammodytes personatus: Improved survival and growth of common octopus paralarvae. Aquaculture 244:147–157

    Google Scholar 

  • Ozyurt G, Duysak O, Akamca E et al (2006) Seasonal changes of fatty acids of cuttlefish Sepia officinalis L. (Mollusca: Cephalopoda) in the north eastern Mediterranean sea. Food Chem 95:382–385

    Google Scholar 

  • Packard A, Albergoni V (1970) Relative growth, nucleic acid content and cell numbers of brain in Octopus vulgaris (Lamarck). J Exp Biol 52:539–552

    CAS  Google Scholar 

  • Pandit AR, Magar NG (1972) Chemical composition of Sepia orientalis and Loligo vulgaris. Fish Technol 9:122–125

    CAS  Google Scholar 

  • Passi S, Cataudella S, Di Marco P et al (2002) Fatty acid composition and antioxidant levels in muscle tissue of different Mediterranean marine species of fish and shellfish. J Agric Food Chem 50:7314–7322

    CAS  Google Scholar 

  • Pecl GT, Moltschaniwskyj NA (1999) Somatic growth processes: how are they altered in captivity? Proc Royal Soc London 266:1133–1139

    Google Scholar 

  • Perrin A, Le Bihan E, Koueta N (2004) Experimental study of enriched frozen diet on digestive enzymes and growth of juvenile cuttlefish Sepia officinalis L. (Mollusca Cephalopoda). J Exp Mar Biol Ecol 311:267–285

    CAS  Google Scholar 

  • Pinto W, Figueira L, Santos A et al (2013) Is dietary taurine supplementation beneficial for gilthead seabream (Sparus aurata) larvae? Aquaculture 384–387:1–5

    Google Scholar 

  • Pörtner H-O (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893

    Google Scholar 

  • Quintana D (2009) Valoración de los requerimientos nutricionales de reproductores de pulpo común (Octopus vulgaris). PhD Thesis. University of La Laguna, Spain

    Google Scholar 

  • Rønnestad I, Thorsen A, Finn RN (1999) Fish larval nutrition: a review of recent advances in the roles of amino acids. Aquaculture 177:201–216

    Google Scholar 

  • Rønnestad I, Tonheim SK, Fyhn HJ et al (2003) The supply of amino acids during early feeding stages of marine fish larvae: a review of recent findings. Aquaculture 227:147–164

    Google Scholar 

  • Roura Á,G, Redd K et al (2012) Molecular prey identification in wild Octopus vulgaris paralarvae. Mar Biol 159:1335–1345

    CAS  Google Scholar 

  • Sargent J, Bell MV, Bell JG et al (1995) Origins and functions of n-3 polyunsaturated fatty acids in marine organisms. In: Phospholipids: Characterization, Metabolism and Novel Biological Applications. Americal Oil Chemical Society, Champaign, p 248–259

    Google Scholar 

  • Sargent J, McEvoy LA, Bell JG (1997) Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155:117–127

    CAS  Google Scholar 

  • Seixas S, Bustamante P, Pierce GJ (2005) Interannual patterns of variation in concentrations of trace elements in arms of Octopus vulgaris. Chemosphere 59:1113–1124

    CAS  Google Scholar 

  • Seixas P, Rey-Mendez M, Valente LMP et al (2008) Producing juvenile Artemia as prey for Octopus vulgaris paralarvae with different microalgal species of controlled biochemical composition. Aquaculture 283:83–91

    CAS  Google Scholar 

  • Seixas P, Rey-Méndez M, Valente LMP et al (2010) High DHA content in Artemia is ineffective to improve Octopus vulgaris paralarvae rearing. Aquaculture 300:156–162

    CAS  Google Scholar 

  • Semmens JM, Pecl GT, Villanueva R et al (2004) Understanding octopus growth: patterns, variability and physiology. Mar Freshw Res 55:367–377

    Google Scholar 

  • Sidwell VD, Loomis AL, Foncannon PR, Buzzell DH (1978) Composition of the edible portion of raw (fresh or frozen) crustaceans, finfish, and mollusks. IV. Vitamins. Mar Fish Rev 40:1–16

    Google Scholar 

  • Sikorski ZE, Kolodziejska I (1986) The composition and properties of squid meat. Food Chem 20:213–224

    CAS  Google Scholar 

  • Sinanoglou VJ, Miniadis-Meimaroglou S (1998) Fatty acid of neutral and polar lipids of (edible) Mediterranean cephalopods. Food Res Int 31:467–473

    CAS  Google Scholar 

  • Sinanoglou VJ, Miniadis-Meimaroglou S (2000) Phospholipids in Mediterranean cephalopods. Z Naturforsch C 55:245–255

    CAS  Google Scholar 

  • Stéphan G, Guillaume J, Lamour F (1995) Lipid-peroxidation in turbot (Scophthalmus maximus) tissue: effect of dietary vitamin E and dietary n–6 or n–3 polyunsaturated fatty acids. Aquaculture 130:251–268

    Google Scholar 

  • Storey KB, Storey JM (1978) Energy metabolism in the mantle muscle of the squid, Loligo pealeii. J Comp Physiol 123:169–175

    CAS  Google Scholar 

  • Storey KB, Storey JM (1979) Octopine metabolism in the cuttlefish, Sepia officinalis—octopine production by muscle and its role as an aerobic substrate for non-muscular tissues. J Comp Physiol 131:311–319

    CAS  Google Scholar 

  • Storey KB, Storey JM (1983) Carbohydrate metabolism on cephalopod molluscs. In: Hochachka PW (ed) The Mollusca. Academic Press Inc., New York, p 91–136

    Google Scholar 

  • Storey KB, Storey JM, Johansen K et al (1979) Octopine metabolism in Sepia officinalis—effect of hypoxia and metabolite loads on the blood-levels of octopine and related-compounds. Can J Zool 57:2331–2336

    CAS  Google Scholar 

  • Swift K, Johnston D, Moltschaniwskyj N (2005) The digestive gland of the Southern Dumpling Squid (Euprymna tasmanica): structure and function. J Exp Mar Biol Ecol 315:177–186

    Google Scholar 

  • Sykes AV, Domingues PM, Correia M et al (2006) Cuttlefish culture—state of the art and future trends. Vie Milieu 56:129–137

    Google Scholar 

  • Sykes AV, Almansa E, Lorenzo A et al (2009a) Lipid characterization of both wild and cultured eggs of cuttlefish (Sepia officinalis L.) throughout the embryonic development. Aquac Nut 15:38–53

    CAS  Google Scholar 

  • Sykes AV, Oliveira AR, Domingues PM et al (2009b) Assessment of European cuttlefish (Sepia officinalis, L.) nutritional value and freshness under ice storage using a developed Quality Index Method (QIM) and biochemical methods. Food Sci Tech 42:424–432

    CAS  Google Scholar 

  • Sykes AV, Pereira D, Rodríguez C et al (2012) Effects of increased tank bottom areas on cuttlefish (Sepia officinalis, L.) reproduction performance. Aquac Res. doi:10.1111/j.1365–2109.2012.03106.x

    Google Scholar 

  • Taylor HH, Anstiss JM (1999) Copper and haemocyanin dynamics in aquatic invertebrates. Mar Freshw Res 50:907–931

    CAS  Google Scholar 

  • Uki N, Kemuyama A, Watanabe T (1986) Optimum protein level in diets for abalone. Bull Jpn Soc Sci Fish 52:1005–1012

    CAS  Google Scholar 

  • Valverde JC, Hernandez MD, Garcia-Garrido S et al (2012) Lipid classes from marine species and meals intended for cephalopod feeding. Aquac Int 20:71–89

    CAS  Google Scholar 

  • Valverde J, Martínez-Llorens S, Vidal A et al (2013) Amino acids composition and protein quality evaluation of marine species and meals for feed formulations in cephalopods. Aquac Int 21:413–433

    CAS  Google Scholar 

  • Van Den Branden CR, Lemaire J et al. (1978) La glande nidamentaire accessoire de Sepia officinalis L.: analyses biochimiques des pigments des bactéries symbiotiques. Annales Soc R Zool Belg 108:123–139

    Google Scholar 

  • Van Den Branden C, Gillis M, Richard A (1980) Carotenoid producing bacteria in the accessory nidamental glands of Sepia officinalis L. Comp Biochem Physiol B 66:331–334

    Google Scholar 

  • Villanueva R, Bustamante P (2006) Composition in essential and non-essential elements of early stages of cephalopods and dietary effects on the elemental profiles of Octopus vulgaris paralarvae. Aquaculture 261:225–240

    CAS  Google Scholar 

  • Villanueva R, Riba J, Ruiz-Capillas C et al (2004) Amino acid composition of early stages of cephalopods and effect of amino acid dietary treatments on Octopus vulgaris paralarvae. Aquaculture 242:455–478

    CAS  Google Scholar 

  • Villanueva R, Escudero JM, Deulofeu R et al (2009) Vitamin A and E content in early stages of cephalopods and their dietary effects in Octopus vulgaris paralarvae. Aquaculture 286:277–282

    CAS  Google Scholar 

  • Vlieg P (1984) Proximate composition of New Zealand squid species. New Zealand J Sci 27:45–150

    Google Scholar 

  • Vonk HJ (1962) Emulgators in the digestive fluids of invertebrates. Arch Int Physiol Biochimie 70:67–85

    CAS  Google Scholar 

  • Wang T, Hung CCY, Randall DJ (2006) The comparative physiology of food deprivation: from feast to famine. Annu Rev Physiol 68:223–251

    Google Scholar 

  • Wells MJ, Wells J (1989) Water uptake in a cephalopod and the function of the so-called pancreas. J Exp Biol 145:215–226

    Google Scholar 

  • Wells MJ, Clarke A (1996) Energetics: the costs of living and reproducing for an individual cephalopod. Philo Trans Royal Soc London Ser B 351:1083–1104

    Google Scholar 

  • Wolf G, Witters R, Decleir W et al (1980) Immunological evidence for hemocyanin-related proteins in mature eggs and embryos of Sepia officinalis L. Arch Int Physiol Bio 88:B254–B254

    Google Scholar 

  • Wolf G, Verheyen E, Vlaeminck A et al (1985) Respiration of Sepia officinalis during embryonic and early juvenile life. Mar Biol 90:35–39

    Google Scholar 

  • Wolfram K, Mark FC, John U et al (2006) Microsatellite DNA variation indicates low levels of genetic differentiation among cuttlefish (Sepia officinalis L.) populations in the English Channel and the Bay of Biscay. Comp Biochem Physiol D 1:375–383

    Google Scholar 

  • Yim M (1978) Développement post-embryonnaire de la glande digestive de Sepia officinalis L. (Mollusque Céphalopode). Université de Caen, Caen, p 81

    Google Scholar 

  • Zlatanos S, Laskaridis K, Feist C et al (2006) Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods. Mol Nut Food Res 50:967–970

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Navarro, J., Monroig, Ó., Sykes, A. (2014). Nutrition as a Key Factor for Cephalopod Aquaculture. In: Iglesias, J., Fuentes, L., Villanueva, R. (eds) Cephalopod Culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8648-5_5

Download citation

Publish with us

Policies and ethics