Skip to main content

Identifying Weapon Delivery Systems Using Macrofracture Analysis and Fracture Propagation Velocity: A Controlled Experiment

  • Chapter
  • First Online:
Book cover Multidisciplinary Approaches to the Study of Stone Age Weaponry

Abstract

In the last few decades, zooarchaeological studies have demonstrated beyond doubt that the hunting abilities of hominins were quite formidable from quite early on. Unfortunately, direct evidence for the use of weapons in hunting is quite rare and depends heavily on the preservation of organic elements. In particular, in the absence of such evidence, it is notoriously difficult to pinpoint the first appearance of complex, mechanically-assisted projectiles (such as darts and arrows) in the archaeological record. In this chapter, we present data from a controlled ballistic experiment with the aim of establishing patterns in the formation of impact fractures that would allow for the discrimination of thrusting spears, (hand-thrown) javelins , and spearthrower darts and arrows. By controlling for the weapon tip shape, weight, and raw material, impact angle (IA) , as well as target composition, we are able to focus on the key elements that separate the different launching systems: velocity and kinetic energy output. The results show that fracture scar length is proportional to kinetic energy at impact, but only if the impact is perpendicular, as acute IAs reduce the energy requirements for the production of large, typical impact fractures. We also confirm previous results of Hutchings (JAS 38:1737–1746, 2011) regarding the relationship between precursory loading rate and fracture propagation speed, documenting a weak linear relationship between the two in our sample. We conclude by discussing the implications of this study for identifying different weapon armatures in the archaeological record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahler, S. A., & McMillan, R. B. (1976). Material culture at rodgers shelter: A reflection of past human activities. In W. R. Wood & R. B. McMillan (Eds.), Prehistoric man and his environments: A case study in the Ozark highland (pp. 163–199). New York: Academic Press.

    Google Scholar 

  • Barton, R. N. E., & Bergman, C. A. (1982). Hunters at Hengistbury: Some evidence from experimental archaeology. World Archaeology, 14, 237–248.

    Article  Google Scholar 

  • Bartram, L. E. (1997). A comparison of Kua (Botswana) and Hadza (Tanzania) bow and arrow hunting. In H. Knecht (Ed.), Projectile technology (pp. 321–343). New York: Plenum Press.

    Chapter  Google Scholar 

  • Baugh, R. A. (2003). Dynamics of spear throwing. American Journal of Physics, 71, 345.

    Article  Google Scholar 

  • Berger, T. D., & Trinkaus, E. (1995). Patterns of trauma among the Neandertals. Journal of Archaeological Science, 22, 841–852.

    Article  Google Scholar 

  • Bergman, C. A., & Newcomer, M. H. (1983). Flint arrowhead breakage: Examples from Ksar Akil, Lebanon. Journal of Field Archaeology, 10, 238–243.

    Google Scholar 

  • Bratlund, B. (1991). A study of hunting lesions containing flint fragments on reindeer bones at Stellmoor, Schleswig-Holstein, Germany. CBA Research Report, 77, 193–207.

    Google Scholar 

  • Bratlund, B. (1999). Taubach revisited. Jahrbuch des Römisch-Germanischen Zentralmuseums Mainz, 46, 61–174.

    Google Scholar 

  • Brown, K. S., Marean, C. W., Jacobs, Z., Schoville, B. J., Oestmo, S., Fisher, E. C., et al. (2012). An early and enduring advanced technology originating 71,000 years ago in South Africa. Nature, 491, 590–593.

    Article  Google Scholar 

  • Cattelain, P. (1989). Un crochet de propulseur solutréen de la grotte de Combe-Saunière 1 (Dordogne). Bulletin de la Société Préhistorique Française, 86(87), 213–216.

    Article  Google Scholar 

  • Chadwick, E., Nicol, A., Lane, J., & Gray, T. (1999). Biomechanics of knife stab attacks. Forensic Science International, 105, 35–44.

    Article  Google Scholar 

  • Churchill, S. E. (1993). Weapon technology, prey size selection, and hunting methods in modern hunter-gatherers: Implications for hunting in the Palaeolithic and Mesolithic. Archeological Papers of the American Anthropological Association, 4, 11–24.

    Article  Google Scholar 

  • Clarkson, C. (2016). Testing archaeological approaches to determining past projectile delivery systems using ethnographic and experimental data. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of stone age weaponry (pp. 189–201). Dordrecht: Springer.

    Google Scholar 

  • Cotterell, B., Hayden, B., Kamminga, J., Kleindienst, M. R., Knudson, R., & Lawrence, R. A. (1979). The Ho Ho Classification and Nomenclature Committee report. In B. Hayden (Ed.), Lithic use-wear analysis (pp. 133–135). New York: Academic Press.

    Google Scholar 

  • d’Errico, F., Backwell, L., Villa, P., Degano, I., Lucejko, J. J., Bamford, M. K., et al. (2012). Early evidence of San material culture represented by organic artifacts from Border Cave, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 109, 13214–13219.

    Article  Google Scholar 

  • Dockall, J. E. (1997). Wear traces and projectile impact: A review of the experimental and archaeological evidence. Journal of Field Archaeology, 24, 321–331.

    Google Scholar 

  • Farizy, C., David, F., & Jaubert, J. (1994). Hommes et bisons du Paléolithique moyen à Mauran (Haute-Garonne). Paris: CNRS Editions.

    Google Scholar 

  • Fischer, A., Hansen, P. V., & Rasmussen, P. (1984). Macro and micro wear traces on lithic projectile points: Experimental results and prehistoric examples. Journal of Danish Archaeology, 3, 19–46.

    Google Scholar 

  • Fischer, A., & Tauber, H. (1986). New C-14 datings of late palaeolithic cultures from Northwestern Europe. Journal of Danish Archaeology, 5, 7–13.

    Google Scholar 

  • Frison, G. C., Wilson, M., & Wilson, D. J. (1976). Fossil bison and artifacts from an early altithermal period Arroyo trap in Wyoming. American Antiquity, 41, 28–57.

    Article  Google Scholar 

  • Gaudzinski, S. (1995). Wallertheim revisited: A re-analysis of the fauna from the middle Paleolithic site of Wallertheim (Rheinhessen/Germany). Journal of Archaeological Science, 22, 51–66.

    Article  Google Scholar 

  • Gaudzinski, S. (2005). Monospecific or species-dominated faunal assemblages during the middle Palaeolithic in Europe. In E. Hovers & S. L. Kuhn (Eds.), Transitions before the Transition: Evolution and stability in the middle Paleolithic and middle stone age (pp. 137–147). New York: Springer.

    Google Scholar 

  • Gaudzinski, S., & Roebroeks, W. (2000). Adults only. Reindeer hunting at the middle Palaeolithic site Salzgitter Lebenstedt, Northern Germany. Journal of Human Evolution, 38, 497–521.

    Article  Google Scholar 

  • Gaudzinski-Windheuser, S. (2005). Subsistenzstrategien frühpleistozäner Hominiden in Eurasien. Taphonomische Faunenbetrachtungen der Fundstellen der ‘Ubeidiya Formation (Israel) (Vol. 61). Mainz and Bonn: Habelt.

    Google Scholar 

  • Gaudzinski-Windheuser, S. (2016). Hunting lesions in pleistocene and early holocene European bone assemblages and their implications for our knowledge on the use and timing of lithic projectile technology. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of stone age weaponry (pp. 77–100). Dordrecht: Springer.

    Google Scholar 

  • Geneste, J. M., & Plisson, H. (1989). Analyse technologique des pointes à cran solutréennes du Placard (Charente), du Fourneau du Diable, du Pech de la Boissière et de Combe Saunière (Dordogne). Paléo, 1, 65–106.

    Article  Google Scholar 

  • Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 221, 163–198.

    Article  Google Scholar 

  • Horsfall, I., Prosser, P., Watson, C., & Champion, S. (1999). An assessment of human performance in stabbing. Forensic Science International, 102, 79–89.

    Article  Google Scholar 

  • Huckell, B. B. (1982). The Denver Elephant Project: A report on experimentation with thrusting spears. Plains Anthropologist, 27, 217–224.

    Google Scholar 

  • Hughes, S. S. (1998). Getting to the point: Evolutionary change in prehistoric weaponry. Journal of Archaeological Method and Theory, 5, 345–408.

    Article  Google Scholar 

  • Hutchings, W. K. (1999). Quantification of fracture propagation velocity employing a sample of Clovis channel flakes. Journal of Archaeological Science, 26, 1437–1447.

    Article  Google Scholar 

  • Hutchings, W. K. (2011). Measuring use-related fracture velocity in lithic armatures to identify spears, javelins, darts, and arrows. Journal of Archaeological Science, 38, 1737–1746.

    Article  Google Scholar 

  • Hutchings, K. (2016). When is a point a projectile? Morphology, impact fractures, scientific rigor, and the limits of inference. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 3–12). Dordrecht: Springer.

    Google Scholar 

  • Hutchings, W. K., & Brüchert, L. W. (1997). Spearthrower performance: Ethnographic and experimental research. Antiquity, 71, 890–897.

    Article  Google Scholar 

  • Iovita, R., Schönekeß, H., Gaudzinski-Windheuser, S., & Jäger, F. (2014). Projectile impact fractures and launching mechanisms: Results of a controlled ballistic experiment using replica Levallois points. Journal of Archaeological Science, 48, 73–83.

    Google Scholar 

  • Kerkhof, F. (1975). Bruchmechanische Analyse von Schadensfällen an Gläsern. Glastechnische Berichte, 48, 112–124.

    Google Scholar 

  • Kerkhof, F., & Müller-Beck, H. (1969). Zur bruchmechanischen Deutung der Schlagmarken an Steingeräten. Glastechnische Berichte, 42, 439–448.

    Google Scholar 

  • Kindler, L. (2012). Die Rolle von Raubtieren in der Einnischung und Subsistenz jungpleistozäner Neandertaler. Mainz: Monographien des Römisch-Germanischen Zentralmuseums.

    Google Scholar 

  • Lazuén, T. (2012). European Neanderthal stone hunting weapons reveal complex behaviour long before the appearance of modern humans. Journal of Archaeological Science, 39, 2304–2311.

    Article  Google Scholar 

  • Lee, R. B., & DeVore, I. (Eds.). (1968). Man the hunter. New York: Aldine de Gruyter.

    Google Scholar 

  • Lombard, M. (2005). Evidence of hunting and hafting during the Middle Stone Age at Sibudu Cave, KwaZulu-Natal, South Africa: A multianalytical approach. Journal of Human Evolution, 48, 279–300.

    Article  Google Scholar 

  • Lombard, M. (2011). Quartz-tipped arrows older than 60 ka: Further use-trace evidence from Sibudu, KwaZulu-Natal, South Africa. Journal of Archaeological Science, 38, 1918–1930.

    Article  Google Scholar 

  • Lombard, M., & Haidle, M. N. (2012). Thinking a bow-and-arrow set: Cognitive implications of middle stone age bow and stone-tipped arrow technology. Cambridge Archaeological Journal, 22, 237–264.

    Article  Google Scholar 

  • Lombard, M., & Pargeter, J. (2008). Hunting with howiesons poort segments: Pilot experimental study and the functional interpretation of archaeological tools. Journal of Archaeological Science, 35, 2523–2531.

    Article  Google Scholar 

  • Lombard, M., Parsons, I., & Van der Ryst, M. (2004). Middle Stone Age lithic point experimentation for macro-fracture and residue analyses: The process and preliminary results with reference to Sibudu Cave points. South African Journal of Science, 100, 159–166.

    Google Scholar 

  • Lombard, M., & Phillipson, L. (2010). Indications of bow and stone-tipped arrow use 64,000 years ago in KwaZulu-Natal, South Africa. Antiquity, 84, 635–648.

    Article  Google Scholar 

  • Lombard, M., & Wadley, L. (2016). Hunting technologies during the holwiesons poort at Sibudu Cave: What they Reveal about human cognition in KwaZulu-Natal, South Africa, between ~65 and 62 ka. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 273–286). Dordrecht: Springer.

    Google Scholar 

  • Marean, C. W., & Kim, S. Y. (1998). Mousterian large-mammal remains from Kobeh Cave: Behavioral implications for Neanderthals and early modern humans. Current Anthropology, 39(supplement), 79–113.

    Article  Google Scholar 

  • McBrearty, S., & Brooks, A. S. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.

    Article  Google Scholar 

  • Newman, K., & Moore, M. W. (2013). Ballistically anomalous stone projectile points in Australia. Journal of Archaeological Science, 40, 2614–2620.

    Article  Google Scholar 

  • Odell, G. H., & Cowan, F. (1986). Experiments with spears and arrows on animal targets. Journal of Field Archaeology, 13, 195–212.

    Google Scholar 

  • Pargeter, J. (2007). Howiesons poort segments as hunting weapons: Experiments with replicated projectiles. South African Archaeological Bulletin, 62, 147–153.

    Google Scholar 

  • Pargeter, J. (2011). Assessing the macrofracture method for identifying stone age hunting weaponry. Journal of Archaeological Science, 38, 2882–2888.

    Article  Google Scholar 

  • Plisson, H., & Beyries, S. (1998). Pointes ou outils triangulaires? Données fonctionnelles dans le Moustérien levantin. Paléorient, 24, 5–24.

    Google Scholar 

  • Raymond, A. (1986). Experiments in the function and performance of the weighted atlatl. World Archaeology, 18, 153–177.

    Article  Google Scholar 

  • Rhodes, J., & Churchill, S. E. (2009). Throwing in the middle and upper Paleolithic: Inferences from an analysis of humeral retroversion. Journal of Human Evolution, 56, 1–10.

    Article  Google Scholar 

  • Richter, H. (1974). Experimentelle Untersuchungen zur Rißausbreitung in Spiegelglas im Geschwindigkeitsbereich 10 −3 bis 5 · 10 3  mm/s. Karlsruhe: TH Karlsruhe.

    Google Scholar 

  • Rieder, H. (2003). Der Große Wurf der frühen Jäger: Nachbau altsteinzeitlicher Speere. Biologie in unserer Zeit, 33, 156–160.

    Article  Google Scholar 

  • Roque, C., Guibert, P., Vartanian, E., Bechtel, F., & Schvoerer, M. (2001). Thermoluminescence-dating of calcite: Study of heated limestone fragments from upper Paleolithic layers at Combe Sauniere, Dordogne, France. Quaternary Science Reviews, 20, 935–938.

    Article  Google Scholar 

  • Rots, V., Van Peer, P., & Vermeersch, P. M. (2011). Aspects of tool production, use, and hafting in palaeolithic assemblages from Northeast Africa. Journal of Human Evolution, 60, 637–664.

    Article  Google Scholar 

  • Rust, A. (1943). Die alt- und mittelsteinzeitlichen Funde von Stellmoor. Neumünster: Karl Wachholtz Verlag.

    Google Scholar 

  • Sahle, Y., Morgan, L. E., Braun, D. R., Atnafu, B., & Hutchings, W. K. (2013). Chronological and behavioral contexts of the earliest middle stone age in the Gademotta formation, Main Ethiopian rift. Quaternary International, 331, 6–19.

    Article  Google Scholar 

  • Sano, K. (2009). Hunting evidence from stone artefacts from the Magdalenian cave site Bois Laiterie, Belgium: A fracture analysis. Quartär, 56, 67–86.

    Google Scholar 

  • Schmitt, D., Churchill, S. E., & Hylander, W. L. (2003). Experimental evidence concerning spear use in neandertals and early modern humans. Journal of Archaeological Science, 30, 103–114.

    Article  Google Scholar 

  • Schoville, B. J. (2010). Frequency and distribution of edge damage on middle stone age lithic points, Pinnacle point 13B, South Africa. Journal of Human Evolution, 59, 378–391.

    Article  Google Scholar 

  • Shea, J. J. (1988). Spear points from the middle Paleolithic of the Levant. Journal of Field Archaeology, 15, 441–450.

    Google Scholar 

  • Shea, J. J. (2006). The origins of lithic projectile point technology: Evidence from Africa, the Levant, and Europe. Journal of Archaeological Science, 33, 823–846.

    Article  Google Scholar 

  • Shea, J., Davis, Z. J., & Brown, K. S. (2001). Experimental tests of middle palaeolithic spear points using a calibrated crossbow. Journal of Archaeological Science, 28, 807–816.

    Article  Google Scholar 

  • Shea, J. J., & Sisk, M. L. (2010). Complex projectile technology and Homo sapiens dispersal into western Eurasia. PaleoAnthropology, 100–122.

    Google Scholar 

  • Shott, M. J. (1997). Stones and shafts redux: The metric discrimination of chipped-stone dart and arrow points. American Antiquity, 62, 86–101.

    Article  Google Scholar 

  • Sisk, M. L., & Shea, J. J. (2009). Experimental use and quantitative performance analysis of triangular flakes (Levallois points) used as arrowheads. Journal of Archaeological Science, 36, 2039–2047.

    Article  Google Scholar 

  • Sisk, M. L., & Shea, J. J. (2011). The African origin of complex projectile technology: An analysis using tip cross-sectional area and perimeter. International Journal of Evolutionary Biology, 2011, 1–8. doi:10.4061/2011/968012.

    Article  Google Scholar 

  • Smith, G. M. (2003). Damage inflicted on animal bone by wooden projectiles: Experimental results and archaeological implications. Journal of Taphonomy, 1, 105–113.

    Google Scholar 

  • Stodiek, U. (1993). Zur Technologie der jungpaläolithischen Speerschleudern (Vol. 9). Tübingen: Institut für Ur- und Frühgeschichte der Universität Tübingen.

    Google Scholar 

  • Thieme, H. (1997). Lower palaeolithic hunting spears from Germany. Nature, 385(6619), 807–810. doi:10.1038/385807a0.

    Article  Google Scholar 

  • Tomenchuk, J. (1985). The development of a wholly parametric use-wear methodology and its application to two selected samples of Epipaleolithic chipped stone tools from Hayonim Cave, Israel. Ph. D. Dissertation, University of Toronto.

    Google Scholar 

  • Trinkaus, E. (2012). Neandertals, early modern humans, and rodeo riders. Journal of Archaeological Science, 39, 3691–3693.

    Article  Google Scholar 

  • Villa, P., Boscato, P., Ranaldo, F., & Ronchitelli, A. (2009a). Stone tools for the hunt: Points with impact scars from a middle Paleolithic site in southern Italy. Journal of Archaeological Science, 36, 850–859.

    Google Scholar 

  • Villa, P., Soriano, S., Teyssandier, N., & Wurz, S. (2009b). The howiesons poort and MSA III at Klasies river main site, Cave 1A. Journal of Archaeological Science, 37, 630–655.

    Google Scholar 

  • Wallner, H. (1939). Linienstrukturen an Bruchflächen. Zeitschrift für Physik, 114, 368–378.

    Article  Google Scholar 

  • Weber, M.-J., Grimm, S. B., & Baales, M. (2011). Between warm and cold: Impact of the younger dryas on human behavior in Central Europe. Quaternary International, 242, 277–301.

    Article  Google Scholar 

  • Wilkins, J., Schoville, B. J., Brown, K. S., & Chazan, M. (2012). Evidence for early hafted hunting technology. Science, 338, 942–946.

    Article  Google Scholar 

  • Witthoft, J. (1968). Flint arrowheads from the eskimo of Northwestern Alaska. Expedition, 10, 10–37.

    Google Scholar 

Download references

Acknowledgements

This work is part of the research strategy of the MONREPOS Archaeological Research Centre and Museum for Human Behavioural Evolution. The authors wish to thank Jörg Herbst, Heinz Hertel, Maik Röhr, and Hans-Georg Staats (PTB) for help with carrying out the experiments and speed measurements. Thanks to Jürgen Richter (University of Cologne) for the authorization to make a mold of the original specimen, to Leslie Pluntke (RGZM Restoration Laboratory) for the production of the mold, and to Susanne Greiff (Archaeometry Center, RGZM) for advice with the process. Many thanks to Walter Mehlem (Praehistoric Archery, Kruft, Germany), who designed and constructed the target and to Wolfgang Mehr (and the glass-casters of Meka Glas GmbH, Kaufbeuren, Germany), who produced the glass copies. Thanks to Yvonne Völlmecke (University of Mainz), who sorted the fractured points and prepared them for the microscopic analysis and fracture propagation speed calculations. Funding for this work was provided by the “Neandertal Projectile Technology” (NeProTec) grant from the German Research Foundation (DFG). Finally, the authors thank the anonymous reviewers, whose comments improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Iovita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Iovita, R., Schönekeß, H., Gaudzinski-Windheuser, S., Jäger, F. (2016). Identifying Weapon Delivery Systems Using Macrofracture Analysis and Fracture Propagation Velocity: A Controlled Experiment. In: Iovita, R., Sano, K. (eds) Multidisciplinary Approaches to the Study of Stone Age Weaponry. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7602-8_2

Download citation

Publish with us

Policies and ethics