Skip to main content

The Dynamic Biogeography of the Anthropocene: The Speed of Recent Range Shifts in Seaweeds

  • Chapter
  • First Online:
Book cover Seaweed Phylogeography

Abstract

The biogeographic boundaries of seaweeds are largely determined by temperature tolerances, physical barriers and limitations to dispersal. Anthropogenic ocean warming and increasing connectivity through human activities are now causing rapid changes in the biogeography of seaweeds. Globally, at least 346 non-native seaweed taxa have been introduced to new regions, and at least 31 species of seaweed have shifted their distributions in response to recent temperature changes. Range-shift speeds were determined for 40 taxa, and compared between three drivers: (I) range expansions caused by introductions, (II) range expansions and (III) contractions caused by climate change (warming/cooling). The speed of change in seaweed biogeography differed between these drivers of change, with expansions significantly faster than contractions, and climate-driven shifts significantly slower than introductions. Some of the best documented introduced species expansions include Sargassum muticum (4.4 km/year in Denmark), Undaria pinnatifida (35–50 km/year in Argentina) and Caulerpa cylindracea (11.9 km/year in the Mediterranean Sea). Examples of seaweeds with recent climate-driven range shifts include Scytothalia dorycarpa, a native species in Western Australia, which retracted >100 km poleward as a consequence of a single event (a regional marine heat wave). However, climate-driven range shifts were generally assessed over long time periods (>10 years). Fucus serratus (1.7 km/year) and Himanthalia elongata (4.4 km/year) have slowly retracted westwards in northern Spain in response to warming in the Bay of Biscay. In England and South Africa, Laminaria ochroleuca (5.4 km/year) and Ecklonia maxima (36.5 km/year) have expanded their ranges in response to local warming and cooling, respectively. These changes in seaweed biogeography likely have had substantial implications for biodiversity and ecosystem processes, particularly where the shifting seaweeds have been canopy-forming foundation species. We discuss some of these consequences and different attributes of climate and invasion-driven range shifts in seaweeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adey WH, Steneck RS. Thermogeography over time creates biogeographic regions: a temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae. J Phycol. 2001;37:677–98.

    Article  Google Scholar 

  • Aguilar-Rosas R, Aguilar-Rosas LE, Avila G, Marcos R. First record of Undaria pinnatifida (Harvey) Suringar (Laminariales,Phaeophyta) on the Pacific coast of Mexico. Bot Mar. 2004;47:255–58.

    Google Scholar 

  • Altamirano M, Andreakis N, Souza-egipsy V, Zanolla M, De la Rosa J. First record of Caulerpa cylindracea (Caulerpaceae , Chlorophyta) in Andalusia (Southern Spain). An del Jardín Botánico Madrid. 2014;71:1–9.

    Google Scholar 

  • Anderson RJ, Bolton JJ, Stegenga H. Using the biogeographical distribution and diversity of seaweed species to test the efficacy of marine protected areas in the warm-temperate Agulhas Marine Province, South Africa. Divers Distrib. 2009;15:1017–27.

    Article  Google Scholar 

  • Aplikioti M, Louizidou P, Mystikou A, Marcou M, Stavrou P, Kalogirou S, et al. Further expansion of the alien seaweed Caulerpa taxifolia var. distichophylla (Sonder) Verlaque, Huisman & Procacini (Ulvophyceae, Bryopsidales) in the Eastern Mediterranean Sea. Aquat Invasions. 2016;11:in press.

    Google Scholar 

  • Arrontes J. Mechanisms of range expansion in the intertidal brown alga Fucus serratus in northern Spain. Mar Biol. 2002;141:1059–67.

    Google Scholar 

  • Assis J, Serrão EA, Claro B, Pearson GA. Climate-driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga. Mol Ecol. 2014;23:2797–810.

    Article  CAS  PubMed  Google Scholar 

  • Baldacconi R, Corriero G. Effects of the spread of the alga Caulerpa racemosa var. cylindracea on the sponge assemblage from coralligenous concretions of the Apulian coast (Ionian Sea, Italy). Mar Ecol. 2009;30:337–45.

    Google Scholar 

  • Bartsch I, Wiencke C, Laepple T. Global seaweed biogeography under a changing climate: the prospected effects of temperature. In: Wiencke C, Bischof K, editors. Seaweed biology. Berlin Heidelberg: Springer; 2012. p. 383–406.

    Chapter  Google Scholar 

  • Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Sunday JM, Hill NA, Dulvy NK, Colwell RK, Holbrook NJ, Fulton EA, Slawinski D, Feng M, Edgar GJ, Radford BT, Thompson PA, Watson RA. Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Change. 2014;26:27–38.

    Article  Google Scholar 

  • Bates AE, Bird TJ, Stuart-smith RD, Wernberg T, Sunday JM, Barrett NS, Edgar GJ, Frusher S, Hobday AJ, Pecl GT, Smale DA, McCarthy M. Distinguishing geographical range shifts from artefacts of detectability and sampling effort. Divers Distrib. 2015;21:13–22.

    Article  Google Scholar 

  • Bennett S, Wernberg T, Connell SD, Hobdav AJ, Johnson CR, Poloczanska ES. The “Great Southern Reef”: social, ecological and economic value of Australia’s neglected kelp forests. Mar Freshwater Res. 2015a. doi:10.1071/MF15232.

    Google Scholar 

  • Bennett S, Wernberg T, Harvey ES, Santana-Garcon J, Saunders BJ. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol Lett. 2015b;18:714–23.

    Article  PubMed  Google Scholar 

  • Björck S. A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat Int. 1995;27:19–40.

    Article  Google Scholar 

  • Bolton JJ. Global seaweed diversity: patterns and anomalies. Bot Mar. 1994;37:241–6.

    Article  Google Scholar 

  • Bolton JJ. The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol Mar Res. 2010;64:263–79.

    Article  Google Scholar 

  • Bolton J, Anderson R, Smit A, Rothman M. South African kelp moving eastwards: the discovery of Ecklonia maxima (Osbeck) Papenfuss at De Hoop Nature Reserve on the south coast of South Africa. African J Mar Sci. 2012;34:147–51.

    Article  Google Scholar 

  • Burridge CP, Hurt AC, Farrington LW, Coutin PC, Austin CM. Stepping stone gene flow in an estuarine dwelling sparid from south east Australia. J Fish Biol. 2004;64:805–19.

    Article  Google Scholar 

  • Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS, Holding J, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Schwing FB, Sydeman WJ, Richardson AJ. The pace of shifting climate in marine and terrestrial ecosystems. Science. 2011;334:652–5.

    Article  CAS  PubMed  Google Scholar 

  • Buschbaum C, Chapman AS, Saier B. How an introduced seaweed can affect epibiota diversity in different coastal systems. Mar Biol. 2006;148:743–54.

    Article  Google Scholar 

  • Byrnes JE, Reed DC, Cardinale BJ, Cavanaugh KC, Holbrook SJ, Schmitt RJ. Climate-driven increases in storm frequency simplify kelp forest food webs. Glob Change Biol. 2011;17:2513–24.

    Article  Google Scholar 

  • Casas G, Scrosati R, Luz Piriz M. The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biol Invasions. 2004;6:411–6.

    Article  Google Scholar 

  • Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 2009;10:235–51.

    Article  Google Scholar 

  • Christie H, Norderhaug KM, Fredriksen S. Macrophytes as habitat for fauna. Mar Ecol Prog Ser. 2009;396:221–33.

    Article  Google Scholar 

  • Coumou D, Rahmstorf S. A decade of weather extremes. Nat Clim Change. 2012;2:491–6.

    Google Scholar 

  • Cowman PF, Bellwood DR. Vicariance across major marine biogeographic barriers: temporal concordance and the relative intensity of hard versus soft barriers. Proc R Soc B. 2013;280:20131541.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dellatorre FG, Amoroso R, Saravia J, Orensanz (Lobo) JM. Rapid expansion and potential range of the invasive kelp Undaria pinnatifida in the Southwest Atlantic. Aqua Invasions. 2014;9(4):467–78.

    Article  Google Scholar 

  • Dethier MN, McDonald K, Strathmann RR. Colonization and connectivity of habitat patches for coastal marine species distant from source populations. Conserv Biol. 2003;17:1024–35.

    Article  Google Scholar 

  • Duarte L, Viejo RM, Martínez B, deCastro M, Gomez-Gesteira M, Gallardo T. Recent and historical range shifts of two canopy-forming seaweeds in North Spain and the link with trends in sea surface temperature. Acta Oecologica. 2013;51:1–10.

    Article  Google Scholar 

  • Engelen AH, Serebryakova A, Ang P, Britton-Simmons K, Mineur F, Pedersen MF, Toth G. Circumglobal invasion by the brown seaweed Sargassum muticum. Oceanogr Mar Biol Ann Rev. 2015; 53:81–126.

    Google Scholar 

  • Espinoza J. The Southern Limit of Sargassum muticum (Yendo) Fensholt (Phaeophyta, Fucales) in the Mexican Pacific. Bot Mar. 1990;33:193–96.

    Google Scholar 

  • Fraser CI, Waters JM. Algal parasite Herpodiscus durvillaeae (Phaeophyceae: Sphacelariales) inferred to have traversed the Pacific Ocean with its buoyant host. J Phycol. 2013;49:202–6.

    Article  CAS  Google Scholar 

  • Fraser CI, Nikula R, Waters JM. Oceanic rafting by a coastal community. Proc R Soc B. 2011;278:649–55.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaylord B, Gaines SD. Temperature or transport? Range limits in marine species mediated solely by flow. Am Nat. 2000;155:769–89.

    Article  PubMed  Google Scholar 

  • Gaylord B, Reed DC, Raimondi PT, Washburn L, McLean SR. A physically based model of macroalgal spore dispersal in the wave and current-dominant nearshore. Ecology. 2002;83:1239–51.

    Article  Google Scholar 

  • Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol Evol. 2012;27:47–55.

    Article  PubMed  Google Scholar 

  • Graham MH. Effects of local deforestation on the diversity and structure of southern California giant kelp forest food webs. Ecosystems. 2004;7:341–57.

    Article  Google Scholar 

  • Grigg R, Hey R. Paleoceanography of the tropical eastern Pacific Ocean. Science. 1992;255:172–8.

    Article  CAS  PubMed  Google Scholar 

  • Hampe A, Petit R. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett. 2005;8:461–7.

    Article  PubMed  Google Scholar 

  • Harley CDG, Hughes AR, Hulgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Willams SL. The impacts of climate change in coastal marine systems. Ecol Lett. 2006;9:228–41.

    Article  PubMed  Google Scholar 

  • Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH. Effects of climate change on global seaweed communities. J Phycol. 2012;48:1064–78.

    Article  CAS  Google Scholar 

  • Hawkins S, Hartnoll R. Factors determining the upper limits of intertidal canopy-forming algae. Mar Ecol Prog Ser. 1985;20:265–71.

    Article  Google Scholar 

  • Hidas EZ, Costa TL, Ayre DJ, Minchinton TE. Is the species composition of rocky intertidal invertebrates across a biogeographic barrier in south-eastern Australia related to their potential for dispersal? Mar Freshwater Res. 2007;58:835–42.

    Article  Google Scholar 

  • Hinojosa IA, Pizarro M, Ramos M, Thiel M. Spatial and temporal distribution of floating kelp in the channels and fjords of southern Chile. Estu Coast Shelf Sci. 2010;87:367–77.

    Article  Google Scholar 

  • Hobday AJ. Age of drifting Macrocystis pyrifera (L.) C. Agardh rafts in the Southern California Bight. J Exp Mar Bio Ecol. 2000a;253:97–114.

    Article  PubMed  Google Scholar 

  • Hobday AJ. Persistence and transport of fauna on drifting kelp (Macrocystis pyrifera (L.) C. Agardh) rafts in the Southern California Bight. J Exp Mar Bio Ecol. 2000b;253:75–96.

    Article  PubMed  Google Scholar 

  • Hobday AJ, Pecl GT. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev Fish Biol Fish. 2013;24:415–25.

    Article  Google Scholar 

  • Hofmann LC, Straub S, Bischof K. Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO2 levels. Mar Ecol Prog Ser. 2012;464:89–105.

    Article  CAS  Google Scholar 

  • Ingólfsson A. The invasion of the intertidal canopy-forming alga Fucus serratus L. to southwestern Iceland: possible community effects. Estu Coast Shelf Sci. 2008;77:484–90.

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation.

    Google Scholar 

  • IPCC (2014) Climate change 2014 synthesis report summary chapter for policymakers.

    Google Scholar 

  • Irving AD, Connell SD. Predicting understorey structure from the presence and composition of canopies: an assembly rule for marine algae. Oecologia. 2006;148:491–502.

    Article  PubMed  Google Scholar 

  • Johnson L, Brawley S, Adey W. Secondary spread of invasive species: historic patterns and underlying mechanisms of the continuing invasion of the European rockweed Fucus serratus in eastern. Biol Invasions. 2012;14:79–97.

    Google Scholar 

  • Johnson CR, Banks SC, Barrett NS, Cazassus F, Dunstan PK, Edgar GJ, Frusher SD, Gardner C, Haddon M, Helidoniotis F, Hill KL, Holbrook NJ, Hosie GW, Last PR, Ling SD, Melbourne-Thomas J, Miller K, Pecl GT, Richardson AJ, Ridgway KR, Rintoul SR, Ritz DA, Ross DJ, Sanderson JC, Shepherd SA, Slotwinski A, Swadling KM, Taw N. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J Exp Mar Bio Ecol. 2011;400:17–32.

    Article  Google Scholar 

  • Karl T, Trenberth K. Modem global climate change. Science. 2003;302:1719–23.

    Article  CAS  PubMed  Google Scholar 

  • Kerswell AP. Global biodiversity patterns of benthic marine algae. Ecology. 2006;87:2479–88.

    Article  PubMed  Google Scholar 

  • Klein J, Verlaque M. The Caulerpa racemosa invasion: a critical review. Mar Pollut Bull. 2008;56:205–25.

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA, Kessing BD, Robertson DR. Massive gene flow across the world’s most potent marine biogeographic barrier. Proc R Soc B. 1998;265:583–8.

    Article  PubMed Central  Google Scholar 

  • Lima FP, Wethey DS. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat Commun. 2012;3:1–13.

    Article  CAS  Google Scholar 

  • Lima FP, Ribeiro PA, Queiroz N, Hawkins SJ, Santos AM. Do distributional shifts of northern and southern species of algae match the warming pattern? Glob Chang Biol. 2007;13:2592–604.

    Google Scholar 

  • Lima FP, Queiroz N, Ribeiro PA, Xavier R, Hawkins SJ, Santos AM. First record of Halidrys siliquosa on the Portuguese coast: counter-intuitive range expansion? Mar Biodivers Rec. 2008; doi: 10.1017/S1755267208000018.

    Google Scholar 

  • Ling SD. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia. 2008;156:883–94.

    Article  CAS  PubMed  Google Scholar 

  • Ling SD, Johnson CR, Frusher SD, Ridgway KR. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc Nat Acad Sci USA. 2009;106:2234–22345.

    Article  Google Scholar 

  • Lozano-Montes HM, Loneragan NR, Babcock RC, Jackson K. Using trophic flows and ecosystem structure to model the effects of fishing in the Jurien Bay Marine Park, temperate Western Australia. Mar Freshwater Res. 2011;62(5):421–31.

    Article  CAS  Google Scholar 

  • Luiz OJ, Madin JS, Robertson DR, Rocha LA, Wirtz P, Floeter SR. Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proc R Soc B. 2012;279:1033–40.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lüning K. Meeresbotanik: Verbreitung, Ökophysiologie und Nutzung der marinen Makroalgen. In: 1st ed. Stuttgart New York: Georg Thieme Verlag; 1985.

    Google Scholar 

  • Macaya EC, Pacheco S, Cáceres A, Musleh S. Range extension of the non-indigenous alga Mastocarpus sp. along the Southeastern Pacific coast. Rev Biol Mar Oceanogr. 2013; 48:661–65.

    Google Scholar 

  • Madin EMP, Ban NC, Doubleday ZA, Holmes TH, Pecl GT, Smith F. Socio-economic and management implications of range-shifting species in marine systems. Glob Environ Change. 2012;22:137–46.

    Article  Google Scholar 

  • Marcelino VR, Verbruggen H. Ecological niche models of invasive seaweeds. J Phycol. 2015;51:606–20.

    Article  Google Scholar 

  • Mathieson AC, Dawes CJ, Pederson J, Gladych RA, Carlton JT. The Asian red seaweed Grateloupia turuturu (Rhodophyta) invades the Gulf of Maine. Biol Invasions. 2008;10:985–88.

    Google Scholar 

  • Mattio L, Zubia M, Maneveldt GW, Anderson RJ, Bolton JJ, de Gaillande C, De Clerck O, Payri CE. Marine flora of the Iles Eparses (Scattered Islands): a longitudinal transect through the Mozambique Channel. Acta Oecologica. 2015. doi:10.1016/j.actao.2015.09.001.

    Google Scholar 

  • Mieszkowska N, Kendall MA, Hawkins SJ, Leaper R, Willamson P, Hardman-Mountford NJ, et al. Changes in the range of some common rocky shore species in Britain - A response to climate change? Hydrobiologia. 2006;555:241–51.

    Google Scholar 

  • Millar AJ. The Flindersian and Peronian Provinces. Algae Aust Introd. 2007:554–59.

    Google Scholar 

  • Molinos JG, Halpern BS, Schoeman DS, Brown CJ, Kiessling W, Moore PJ, Pandolfi JM, Poloczanska ES, Richardson AJ, Burrows MT. Climate velocity and the future global redistribution of marine biodiversity. Nat Clim Change. 2015. doi:10.1038/nclimate2769.

    Google Scholar 

  • Myers AA. Biogeographic barriers and the development of marine biodiversity. Estu Coast Shelf Sci. 1997;44:241–8.

    Article  Google Scholar 

  • Neill PE, Alcalde O, Faugeron S, Navarrete SA, Correa JA. Invasion of Codium fragile ssp. tomentosoides in northern Chile: A new threat for Gracilaria farming. Aquaculture. 2006;259:202–210.

    Google Scholar 

  • Neiva J, Assis J, Coelho NC, Fernandes F, Pearson GA, Serräo EA. Genes left behind: climate change threatens cryptic genetic diversity in the canopy-forming seaweed Bifurcaria bifurcata. PLoS One. 2015;10:e0131530.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Neiva J, Serrão EA, Assis J, Pearson GA, Coyer JA, Olsen JL, Hoarau G, Valero M. Climate oscillations, range shifts and phylogeographic patterns of North Atlantic Fucaceae. In: Hu ZM, Fraser CI, editors. Seaweed phylogeography: adaptation and evolution of seaweeds under environmental change. Berlin Heidelberg: Springer; 2016.

    Google Scholar 

  • Newton C, Bracken MES, McConville M, Rodrigue K, Thornber CS. Invasion of the red seaweed Heterosiphonia japonica spans biogeographic provinces in the Western North Atlantic Ocean. PLoS One. 2013;8(4):e62261.

    Google Scholar 

  • Nicastro KR, Zardi GI, Teixeira S, Neiva J, Serrao EA, Pearson GA. Shift happens : trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biol. 2013;11:6.

    Google Scholar 

  • Nogales M, Heleno R, Traveset A, Vargas P. Evidence for overlooked mechanisms of long-distance seed dispersal to and between oceanic islands. New Phytol. 2012;194:313–7.

    Article  PubMed  Google Scholar 

  • Norton TA. Dispersal by macroalgae. Br Phycol J. 1992;27:293–301.

    Article  Google Scholar 

  • Ortegón-aznar I, Rosado-espinosa LA, Aguilar-perera A. Occurrence of the introduced alga Caulerpa ollivieri Dostál, 1929 (Caulerpaceae, Chlorophyta) in the Southern Gulf of Mexico. BioInvasions Rec. 2015;4:17–21.

    Google Scholar 

  • Pedersen MF, Staehr PA, Wernberg T, Thomsen MS. Biomass dynamics of exotic Sargassum muticum and native Halidrys siliquosa in Limfjorden, Denmark—implications of species replacements on turnover rates. Aquat Bot. 2005;83:31–47.

    Article  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD. Climate change and distribution shifts in marine fishes. Science. 2005;308:1912–5.

    Article  CAS  PubMed  Google Scholar 

  • Piazzi L, Balata D, Ceccherelli G, Cinelli F. Interactive effect of sedimentation and Caulerpa racemosa var. cylindracea invasion on macroalgal assemblages in the Mediterranean Sea. Estu Coast Shelf Sci. 2005;64:467–74.

    Article  Google Scholar 

  • Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA. Marine taxa track local climate velocities. Science. 2013;341:1239–42.

    Article  CAS  PubMed  Google Scholar 

  • Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ. Global imprint of climate change on marine life. Nat Clim Change. 2013;3:919–25.

    Article  Google Scholar 

  • Provan J, Maggs CA. Unique genetic variation at a species’ rear edge is under threat from global climate change. Proc R Soc B. 2012;279:39–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quartino ML, Deregibus D, Campana GL, Juan Latorre GE, Momo FR. Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PLoS One. 2013;8(3):e58223.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riosmena-Rodríguez R, Boo GH, López-Vivas JM, Hernandez-Velasco A, Saenz-Arroyo A, Boo SM. The invasive seaweed Sargassum filicinum (Fucales, Phaeophyceae) is on the move along the Mexican Pacific coastline. Bot Mar. 2012;55:547–51.

    Google Scholar 

  • Rothäusler E, Gutow L, Thiel M. Floating seaweeds and their communities. In: Wiencke C, Bischof K, editors. Seaweed biology. Berlin: Springer; 2012. p. 359–80.

    Chapter  Google Scholar 

  • Ruitton S, Javel F, Culioli J-M, Meinesz A, Pergent G, Verlaque M. First assessment of the Caulerpa racemosa (Caulerpales, Chlorophyta) invasion along the French Mediterranean coast. Mar Pollut Bull. 2005;50:1061–8.

    Article  CAS  PubMed  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Marker IM, Thompson JN, Weller SG. The population biology of invasive species. Ann Rev Ecol Syst. 2001;32:305–32.

    Article  Google Scholar 

  • Santelices B. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr Mar Biol Ann Rev. 1990;28:177–276.

    Google Scholar 

  • Scheibling RE, Gagnon P. Competitive interactions between the invasive green alga Codium fragile ssp. tomentosoides and native canopy-forming seaweeds in Nova Scotia (Canada). Mar Ecol Prog Ser. 2006;325:1–14.

    Google Scholar 

  • Schils T, Wilson SC. Temperature threshold as a biogeographic barrier in northern Indian ocean macroalgae. J Phycol. 2006;42:749–56.

    Article  Google Scholar 

  • Simon C, Ar GE, Deslandes E. Expansion of the red alga Grateloupia doryphora along the coasts of Brittany (France). Hydrobiologia. 2001;443:23–29.

    Google Scholar 

  • Smale DA, Wernberg T. Extreme climatic event drives range contraction of a habitat-forming species. Proc R Soc B. 2013;280:20122829.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smale DA, Wernberg T, Yunnie ALE, Vance T. The rise of Laminaria ochroleuca in the Western English Channel (UK) and comparisons with its competitor and assemblage dominant Laminaria hyperborea. Mar Ecol. 2014. doi:10.1111/maec.12199.

    Google Scholar 

  • Smit AJ, Roberts M, Anderson RJ, Dufois F, Dudley SFJ, Bornan TG, Olbers J, Bolton JJ. A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely-sensed data sets around the coast of South Africa. PLoS One. 2013.

    Google Scholar 

  • Sorte CJB, Williams SL, Carlton JT. Marine range shifts and species introductions: comparative spread rates and community impacts. Glob Ecol Biogeogr. 2010;19:303–16.

    Article  Google Scholar 

  • Sorte CJB, Ibáñez I, Blumenthal DM, Molinri NA, Miller LP, Grosholz ED, Diez JM, D’Antonio CM, Olden JD, Jones SJ, Dukes JS. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol Lett. 2013;16:261–70.

    Article  PubMed  Google Scholar 

  • Stæhr PA, Pedersen MF, Thomsen MS, Wernberg T, Krause-Jensen D. Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. Mar Ecol Prog Ser. 2000;207:79–88.

    Article  Google Scholar 

  • Stewart HL. The role of spatial and ontogenetic morphological variation in the expansion of the geographic range of the tropical brown alga, Turbinaria ornata. Integr Comp Biol. 2008;48:713–19.

    Google Scholar 

  • Sunday JM, Pecl GT, Frusher S, Hobday AJ, Hill N, Holbrook NJ, Edgar GJ, Stuart-Smith R, Barrett N, Wernberg T, Watson RA, Smale DA, Fulton EA, Slawinski D, Feng M, Radford BT, Thompson PA, Bates AE. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol Lett. 2015;18:944–53.

    Article  PubMed  Google Scholar 

  • Tait LW, South PM, Lilley SA, Thompsen MS, Schiel DR. Assemblage and understory carbon production of native and invasive canopy-forming macroalgae. J Exp Mar Bio Ecol. 2015;469:10–7.

    Article  CAS  Google Scholar 

  • Takao S, Kumagai NH, Yamano H, Fujii M, Yamanaka Y. Projecting the impacts of rising seawater temperatures on the distribution of seaweeds around Japan under multiple climate change scenarios. Ecol Evol. 2015;5:213–23.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tanaka K, Taino S, Haraguchi H, Prendergast G, Hiraoka M. Warming off southwestern japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol Evol. 2012;2:2854–65.

    Article  PubMed Central  PubMed  Google Scholar 

  • Terazono Y, Nakamura Y, Imoto Z, Hiraoka M. Fish response to expanding tropical Sargassum beds on the temperate coasts of Japan. Mar Ecol Prog Ser. 2012;464:209–20.

    Article  Google Scholar 

  • Thomsen MS, Wernberg T, Tuya F, Silliman BR. Evidence for impacts of nonindigenous macroalgae: a meta-analysis of experimental field studies. J Phycol. 2009;45:812–9.

    Article  Google Scholar 

  • Thomsen MS, Wernberg T, Altieri A, Tuya F, Gulbransen D, McGlathery KJ, Holmer M, Silliman BR. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr Comp Biol. 2010;50(2):158–75.

    Article  PubMed  Google Scholar 

  • Thomsen MS, Wernberg T, Olden JD, Griffin GN, Silliman BR. A framework to study the context-dependent impacts of marine invasions. J Exp Mar Bio Ecol. 2011;400:322–7.

    Article  Google Scholar 

  • Thomsen MS, Wernberg T, Olden JD, Byers JE, Bruno JF, Silliman BR, Schiel DR. Forty years of experiments on aquatic invasive species: are study biases limiting our understanding of impacts? NeoBiota. 2014;22:1–22.

    Article  Google Scholar 

  • Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Vanden Berghe E, Worm B. Global patterns and predictors of marine biodiversity across taxa. Nature. 2010;466:1098–101.

    Article  CAS  PubMed  Google Scholar 

  • Tuya F, Wernberg T, Thomsen MS. Habitat structure affect abundances of labrid fishes across temperate reefs in south-western Australia. Environ Biol Fishes. 2009;86:311–9.

    Article  Google Scholar 

  • Van den Hoek C. The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol J Linn Soc. 1982;18:81–144.

    Article  Google Scholar 

  • Van den Hoek C. The possible significance of long-range dispersal for the biogeography of seaweeds. Helgol Meeresun. 1987;41:261–72.

    Article  Google Scholar 

  • Verbruggen H, Tyberghein L, Belton GS, Mineur F, Jueterbock A, Hoarau G, Gurgel CFD, De Clerk O. Improving transferability of introduced species’ distribution models: new tools to forecast the spread of a highly invasive seaweed. PLoS One. 2013;8:e68337.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wallentinus I. Alien species alert: Undaria pinnatifida (Wakame or japanese kelp). ICES Cooperation Research Report No. 283. Copenhagen: International Council for the Exploration of the Sea; 2007.

    Google Scholar 

  • Watanabe S, Scheibling RE, Metaxas A. Contrasting patterns of spread in interacting invasive species: Membranipora membranacea and Codium fragile off Nova Scotia. Biol Invasions. 2010;12:2329–342.

    Google Scholar 

  • Waters JM. Marine biogeographical disjunction in temperate Australia: historical landbridge, contemporary currents, or both? Divers Distrib. 2008;14:692–700.

    Article  Google Scholar 

  • Waters JM, Fraser CI, Hewitt GM. Founder takes all: density-dependent processes structure biodiversity. Trends Ecol Evol. 2013;28:78–85.

    Article  PubMed  Google Scholar 

  • Wernberg T, Kendrick GA, Phillips JC. Regional differences in kelp-associated algal assemblages on temperate limestone reefs in south-western Australia. Divers Distrib. 2003;9:427–41.

    Article  Google Scholar 

  • Wernberg T, Thomsen MS, Staehr PA, Pedersen MF. Epibiota communities of the introduced and indigenous macroalgal relatives Sargassum muticum and Halidrys siliquosa in Limfjorden (Denmark). Helgol Mar Res. 2004;58:154–61.

    Article  Google Scholar 

  • Wernberg T, Russell BD, Thomsen MS, Gurgel CFD, Bradshaw CJA, Poloczanska ES, Connell SD. Seaweed communities in retreat from ocean warming. Curr Biol. 2011a;21:1828–32.

    Article  CAS  PubMed  Google Scholar 

  • Wernberg T, Russell BDBD, Moore PJPJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Bio Ecol. 2011b;400:7–16.

    Article  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, de Bettgnies T, Bennett S, Rousseaux CS. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change. 2013a;3:78–82.

    Article  Google Scholar 

  • Wernberg T, Thomsen MS, Connell SD, Russell BD, Waters JM, Zuccarello GC, Kraft GT, Sanderson C, West JA, Gurgel CFD. The footprint of continental-scale ocean currents on the biogeography of seaweeds. PLoS One. 2013b;8(11):e80186.

    Article  CAS  Google Scholar 

  • Wiens JJ. The niche, biogeography and species interactions. Phil Trans R Soc B. 2011;366:2336–50.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wiens JJ, Donoghue MJ. Historical biogeography, ecology and species richness. Trends Ecol Evol. 2005;19(12):639–44.

    Article  Google Scholar 

  • Williams SL, Smith JE. A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Ann Rev Ecol Evol Syst. 2007;38:327–59.

    Article  Google Scholar 

  • Wootton JT. Local interactions predict large-scale pattern in empirically derived cellular automata. Nature. 2001;413:841–4.

    Article  CAS  PubMed  Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R. Impacts of biodiversity loss on ocean ecosystem services. Science. 2006;314:787–90.

    Article  CAS  PubMed  Google Scholar 

  • York KL, Blacket MJ, Appleton BR. The Bassian Isthmus and the major ocean currents of southeast Australia influence the phylogeography and population structure of a southern Australian intertidal barnacle Catomerus polymerus (Darwin). Mol Ecol. 2008;17:1948–61.

    Article  CAS  PubMed  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 2008;451:279–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Western Australia through an International Postgraduate Research Scholarship to SS and a research collaboration award to TW, the Australian Research Council through a Future Fellowship (FT110100174) to TW. MST was supported by the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wernberg .

Editor information

Editors and Affiliations

Appendix

Appendix

Review of published literature and citation searches to compile a global dataset of documented range shifts in native seaweeds or range expansions of successful seaweed invaders. Used key words include climate change , warming, extreme events , heat waves, invasive seaweeds , successful invaders, shift in distribution, range shifts , range expansion and range contraction . Literature was included when data was available for the direction, distance and time window of seaweed shift, so annual spread rates could be calculated. Literature stating a decrease in abundance or not pinpointing location and time window were excluded from the dataset. The two main drivers are Introduction (introduction) and Warming (contraction/expansion). When unusual driver it is added in brackets

Species

Division

Region

Driver

Annual spread (km/years)

First appearance/absence

Time window (years)

Distance (km)

Reference

Assemblage

Assemblage

SW Australia

Contraction

1.0

1940

50

51

Wernberg et al. (2011a, b)

Assemblage

Assemblage

SE Australia

Contraction

4.2

1940

50

211

Wernberg et al. (2011a, b)

Caulerpa cylindracea

Chlorophyta

Provence, France

Introduction

11.9

1997

7

83

Ruitton et al. (2005)

Caulerpa cylindracea

Chlorophyta

Ligurian Sea

Introduction

44.0

2009

5

220

Altamirano et al. (2014)

Caulerpa ollivieri

Chlorophyta

Mexico

Introduction

19.0

1968

42

800

Ortegón-Aznar et al. (2015)

Caulerpa taxifolia var. distichophylla

Chlorophyta

Mediterranean Sea

Introduction

33.3

2006

6

200

Aplikioti et al. (2016)

Caulerpa taxifolia var. distichophylla

Chlorophyta

Mediterranean Sea

Introduction

87.5

2006

8

700

Aplikioti et al. (2016)

Codium adhaerens

Chlorophyta

Portugal

Expansion

1.2

1955

50

59

Lima et al. (2007)

Codium fragile ssp. fragile

Chlorophyta

Nova Scotia

Introduction

11.1

1989

18

200

Watanabe et al. (2010)

Codium fragile ssp. tomentosoides

Chlorophyta

NW Atlantic

Introduction

16.0

1955

47

750

Scheibling and Gagnon (2006)

Codium fragile ssp. tomentosoides

Chlorophyta

NW Atlantic

Introduction

10.6

1955

47

500

Scheibling and Gagnon (2006)

Codium fragile ssp. tomentosoides

Chlorophyta

Northern Chile

Introduction

6.4

2005

7

45

Neill et al. (2006)

Valonia utricularis

Chlorophyta

Portugal

Expansion

3.9

1955

50

197

Lima et al. (2007)

Ahnfeltia plicata

Ochrophyta

Portugal

Expansion

6.6

1955

50

330

Lima et al. (2007)

Bifurcaria bifurcata

Ochrophyta

Britain, Ireland

Expansion

3.1

1964

45

140

Mieszkowska et al. (2006)

Bifurcaria bifurcata

Ochrophyta

Portugal

Expansion

5.1

1955

50

257

Lima et al. (2007)

Chondrus crispus

Ochrophyta

Portugal

Expansion

3.6

1955

50

180

Lima et al. (2007)

Desmarestia aculeata

Ochrophyta

Portugal

Expansion

4.5

1955

50

227

Lima et al. (2007)

Desmarestia ligulata

Ochrophyta

Portugal

Expansion

1.4

1955

50

70

Lima et al. (2007)

Dumontia contorta

Ochrophyta

Portugal

Expansion

1.2

1955

50

62

Lima et al. (2007)

Durvillea potatorum

Ochrophyta

SE Australia

Contraction

0.6

1945

60

35

Millar (2007)

Ecklonia maxima

Ochrophyta

South Africa

Expansion

36.5

2008

2

73

Bolton et al. (2012)

Ecklonia radiata

Ochrophyta

SW Australia

Contraction

88.0

2011

1

88

Wernberg and Bennett, unpublished data 2015

Fucus serratus

Ochrophyta

North Spain

Contraction

1.9

1894

60

116

Duarte et al. (2013)

Fucus serratus

Ochrophyta

North Spain

Contraction

5.1

1955

21

107

Duarte et al. (2013)

Fucus serratus

Ochrophyta

North Spain

Expansion

2.2

1977

12

26

Duarte et al. (2013)

Fucus serratus

Ochrophyta

Spain

Expansion

5.0

1982

20

100

Arrontes (2002)

Fucus serratus

Ochrophyta

North America

Introduction

11.8

1868

17

200

Johnson et al. (2012)

Fucus serratus

Ochrophyta

North America

Introduction

5.3

1868

17

90

Johnson et al. (2012)

Fucus vesiculosus

Ochrophyta

Morocco

Contraction

41.7

1985

30

1250

Nicastro et al. (2013)

Fucus vesiculosus

Ochrophyta

Portugal

Expansion

3.1

1955

50

157

Lima et al. (2007)

Halidrys siliquosa

Ochrophyta

Portugal

Expansion

1.8

1955

50

90

Lima et al. (2007)

Halydris siliquosa

Ochrophyta

Portugal

Expansion

1.1

2006

75

80

Lima et al. (2008)

Himanthalia elongata

Ochrophyta

North Spain

Contraction

1.8

1889

66

116

Duarte et al. (2013)

Himanthalia elongata

Ochrophyta

North Spain

Contraction

4.2

1955

20

84

Duarte et al. (2013)

Himanthalia elongata

Ochrophyta

North Spain

Contraction

26.0

2004

5

130

Duarte et al. (2013)

Himanthalia elongata

Ochrophyta

Portugal

Expansion

4.4

1955

50

219

Lima et al. (2007)

Laminaria ochroleuca

Ochrophyta

SE Atlantic

Expansion

2.5

1948

60

150

Smale et a (2013)

Laminaria ochroleuca

Ochrophyta

SE Atlantic

Expansion

5.4

1948

60

325

Smale et al. (2013)

Padina pavonica

Ochrophyta

Portugal

Expansion

3.7

1955

50

187

Lima et al. (2007)

Pelvetia canaliculata

Ochrophyta

Portugal

Expansion

4.9

1955

50

245

Lima et al. (2007)

Sargassum filicinum

Ochrophyta

Mexico

Introduction

137.5

2003

4

550

Riosmena-Rodriguez (2012)

Sargassum flavifolium

Ochrophyta

Portugal

Expansion

11.9

1955

50

593

Lima et al. (2007)

Sargassum illicifolium

Ochrophyta

Japan

Expansion

10.5

1989

19

200

Tanaka et al. (2012)

Sargassum micracanthum

Ochrophyta

Japan

Contraction

3.9

1977

31

120

Tanaka et al. (2012)

Sargassum muticum

Ochrophyta

Denmark

Introduction

4.4

1984

16

70

Staehr et al. (2000)

Sargassum muticum

Ochrophyta

Canada

Introduction

111.2

1947

6

667

Engelen et al. (2015)

Sargassum muticum

Ochrophyta

northern California

Introduction

80.6

1965

18

1450

Engelen et al. (2015)

Sargassum muticum

Ochrophyta

Mexico

Introduction

35.0

1973

8

280

Engelen et al. (2015)

Sargassum muticum

Ochrophyta

Netherlands

Introduction

50.0

1979

6

300

Engelen et al. (2015)

Sargassum muticum

Ochrophyta

Denmark

Introduction

120.0

1984

5

600

Engelen et al. (2015)

Sargassum muticum

Ochrophyta

France

Introduction

81.8

1983

11

900

Engelen et al. (2015)

Sargassum muticum

Ochrophyta

Mexico

Introduction

2.7

1988

15

40

Espinoza (1990)

Sargassum yamamotoi

Ochrophyta

Japan

Contraction

4.4

1977

31

135

Tanaka et al. (2012)

Scytothalia dorycarpa

Ochrophyta

SW Australia

Contraction

100.0

2011

1

100

Smale and Wernberg (2013)

Scytothalia dorycarpa

Ochrophyta

SW Australia

Contraction

3.2

1961

50

160

Smale and Wernberg (2013)

Turbinaria ornata

Ochrophyta

French Polynesia

Expansion

30.0

1980

10

300

Stewart (2008)

Undaria pinnatifida

Ochrophyta

North America

Introduction

125.0

2000

2

250

Aguilar-Rosas et al. (2004)

Undaria pinnatifida

Ochrophyta

Mexico

Introduction

66.7

2003

3

200

Aguilar-Rosas et al. (2004)

Undaria pinnatifida

Ochrophyta

Argentina

Introduction

35.7

1999

7

250

Dellatorre et al. (2014)

Undaria pinnatifida

Ochrophyta

Argentina

Introduction

50.0

2005

6

300

Dellatorre et al. (2014)

Undaria pinnatifida

Ochrophyta

Argentina

Introduction

50.0

2012

20

1000

Dellatorre et al. (2014)

Grateloupia doryphora

Rhodophyta

Brittany, France

Introduction

150.0

1999

1

150

Simon et al. (2001)

Grateloupia turuturu

Rhodophyta

Gulf of Maine

Introduction

33.0

2007

4

132

Mathieson et al. (2008)

Halopithys incurva

Rhodophyta

Portugal

Expansion

9.5

1955

50

475

Lima et al. (2007)

Heterosiphonia japonica

Rhodophyta

Western North Atlantic

Introduction

66.7

2007

6

400

Newton et al. (2013)

Heterosiphonia japonica

Rhodophyta

Western North Atlantic

Introduction

16.7

2007

6

100

Newton et al. (2013)

Hypnea musciformis

Rhodophyta

Portugal

Expansion

5.4

1955

50

269

Lima et al. (2007)

Mastocarpus sp.

Rhodophyta

Chile

Introduction

18.2

1980

22

400

Macaya et al. (2013)

Mastocarpus sp.

Rhodophyta

Chile

Introduction

31.8

1980

22

700

Macaya et al. (2013)

Palmaria palmata

Rhodophyta

Portugal

Expansion

7.2

1955

50

358

Lima et al. (2007)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Straub, S.C., Thomsen, M.S., Wernberg, T. (2016). The Dynamic Biogeography of the Anthropocene: The Speed of Recent Range Shifts in Seaweeds. In: Hu, ZM., Fraser, C. (eds) Seaweed Phylogeography. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7534-2_3

Download citation

Publish with us

Policies and ethics