Skip to main content

Abstract

Root exudation is an important ecological phenomenon which can manipulate plant and microbial succession. Under sterile conditions only 5–10% of the fixed carbon is released by roots compared to 12–% released from roots in nonsterile soil and the increase is attributed to rhizosphere microflora. There is more exudation by symbiotic plants. Different techniques for collection and analysis of constituents of root exudates has been described. Various factors governing the rate of exudation has also been given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, J.M.M., Ashby, A.M., Richards, A.J.M., Loake, G.J., Watson, M.D. and Shaw, C.H. 1988. Chemotaxis of Rhizobium leguminosarum towards flavonoid inducers of the symbiotic nodulation genes. Jounal of General Microbiology, 134: 2741–2746.

    Google Scholar 

  2. Albrecht, C., Geutrs, R Lapeyrie, F. and Bisseling, T. 1998. Endomycorrhizae and rhizobial nod factors both require SXMS to induce the expression of the early nodulin genes P ENOD5 and P ENOD 12k Plant Journal, 15: 605–614.

    CAS  Google Scholar 

  3. Allen, M.F. 1991. The Ecology of Mycorrhizae. Cambridge University Press. Cambridge, 184 P.

    Google Scholar 

  4. Allen, R.N., Newhook, F.J. 1973. Chemotaxis of Zoospores of Phytophthora cinnamomi to ethanol in capillaries of soil pore dimensions. Transactions of the British Mycological Society, 62 (2): 287–302.

    Article  Google Scholar 

  5. Armitage, J.P. Gallagher, A. and Johnston, A.W.B. 1988. Comparison of the chemolactic behaviour of Rhizobium leguminosarum with and without the nodulation plasma. Molecular Microbiology. 2: 743–748.

    CAS  Google Scholar 

  6. Ashby, A.M., Watson, M.D., Loake, G.J. and Shaw, C.H. 1988. Ti plasmid specific chemotaxis ofAgrobacterium tumefaciens C58c toward vir inducing phenolic compounds and soluble factors from mono-cotyledonous and dicotyledonous plants. Journal of Bacteriology, 170: 4181–4187.

    PubMed  CAS  Google Scholar 

  7. Bagyaraj, D.J. 1991. In, “Hand Book of Applied Mycology”, (eds. Arora, D.K., Rai, B., Mukeiji, K.G. and Kundsen, G.R), Marcel and Decker, New York, pp. 3–34.

    Google Scholar 

  8. Bansal, M and Mukaji, KG. 1996. Root exudates and its rhizosphere Biology. In: “Concepts in Applied Microbiology and Biotechnology”. (eds Mukcrji, KG., Singh, V.P. and Dwivedi, Suvercha). Aditya Bocks Private Limited, pp. 97–119.

    Google Scholar 

  9. Barber, D.A, and Gunn, K.B. 1974. The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions. New Phytologist, 73: 39–45.

    Article  CAS  Google Scholar 

  10. Barber, D.A, and Martin, J.K, 1976. The Release of organic substances by cereal roots into the soil. New Phytologist, 76: 69–80.

    Article  CAS  Google Scholar 

  11. Barton, R 1957. Germination of oospores ofPythium mamillatum in response to exudates from living seedlings. Nature,. 180: 613–614.

    Article  Google Scholar 

  12. Bateman, D.F. 1978. In, “Plant Disease: An Advanced Treatise”, (eds. Horsfall, J.G. and Cowling, E.B.) Academic Press. London, New York pp. 53–83.

    Google Scholar 

  13. Bauer, WD. 1981. Infection of legumes by rhizobia. Annual Review of Plant Physiology, 32: 407–449.

    Article  CAS  Google Scholar 

  14. Bauer, W.D. and Caetano-Annolles, G. 1990. Chemotaxis induced gene expression and competitiveness in the rhizospbcre. Plant and Soil. 129: 45–52.

    Article  CAS  Google Scholar 

  15. Beagle-Ristaino, Jean, E. 1983. Effect ofRhirob!um japonicum Nodulation on severity of Phytophthora root rot of Soyabean. Plant Disease, 67: 651–653.

    Google Scholar 

  16. Berisch, K, Guckert, A. and Reisinger, 0.; 1975. Etude au microscope electronique de la zone apicale de racines de niais. Society of Botany France, Collouquiwn–Rhizosphere, 122: 55–60.

    Google Scholar 

  17. Bhuvaneshwari, K. and Sulochana, CB. 1955. Essay of mot exudates. Current Science, 24: 376–377.

    Google Scholar 

  18. and Blee, KA and Anderson, A.J. 2000. Defence responses in plants to arbuscular mycorrhi7al fungi. In: “Current Advances in Mycorrhi7ae Research”. (eds. Podia, G.K. and Douds, D.D.). American Phytopathological Society Press, St. PauL Minnesota pp. 27–43.

    Google Scholar 

  19. Bohlool, B.B. and Schmidt, E.L. 1976. Immunolluorescent polar tips of Rhizobium japonicum: possible site of attachment or lectin Binding. Journal ofBacteriology, 125: 1188–1194.

    CAS  Google Scholar 

  20. Bowen, G.D., and Ravira, A.D. 1976. Microbial colonization of plant roots. Annual Review of Phytopathology, 14: 121–144.

    Article  Google Scholar 

  21. Calvert, H.E., Pence, M.K., Pierce, M., Malik, N.S.A. and Barrer, W.D. 1984. Anatomical analysis of the development and distribution of Rhizobium infections in Soyabean roots. Canadian Journal ofBotany, 62: 2375–2384.

    Article  Google Scholar 

  22. Cambardella, C.A. and Elliott, E.T. 1992. Particulate soil organic matter across a grassland cultivation sequence. Soil Science Society of America Journal, 56: 777–783.

    Article  Google Scholar 

  23. Catakio, D.A, McFadden, KM, Garland, T.R. and Widung, R.E. 1988. Organic constituents and conplexation of nickel II, iron III, cadmium II and plutonium IV in Soyabean xylem exudates. Plant Physiology, 86: 734–739.

    Article  Google Scholar 

  24. Cheshire, MN and Munde, C.M 1990. Organic matter contributed to soil by plant roots during the growth and decomposition of maimp. Plant and Soil, 121: 107–114.

    CAS  Google Scholar 

  25. Techniques in Mycorrhizal Studies

    Google Scholar 

  26. Coley-Smith, J.R. and King, J.E. 1970. In, “Root Disease and Soil Borne Pathogens”. (eds., Tousson, T.A., Bega, R.V. and Nelson, P.E.) University of California Press. Berkeley, USA, pp. 130–133.

    Google Scholar 

  27. Cortez, J. and Billes, G. 1982. Role des ions calcium dans la formation du mucilage de Zea mays. Acta Oecology and Plant, 17: 67–68.

    Google Scholar 

  28. Curl. E.A. 1982. The Rhizosphere: Relation to pathogen behavour and root disease. Plant Disease, 66: 624–630.

    Article  Google Scholar 

  29. Curl, E.A., and Truelove, B. 1986. The Rhizosphere. Springer Verlag, Berlin Heidelberg, New York, Tokyo.

    Google Scholar 

  30. Djordevic, M.A., Gabriel, D.W. and Rolfe, B.G. 1987. Rhizobium–the refined parasite of legumes. Annual Review of Phytopathology, 25: 145–168.

    Article  Google Scholar 

  31. Dorioz, J.M. and Robert, M. 1987. Aspects microscopiques des relations entre les microorganisms ou vegetawo et le sargiles: consequence sur les microorganisation et la microstructuration des sols. Micromorphologie des Sols, 18: 353–361.

    Google Scholar 

  32. Duchesne, L.C., Peterson, RL. and Ellis, B.E. 1988. Pine root exudate stimulates the synthesis of antifungal compounds by the ectomycorrhizal fungus Paxillus involutus, New Phytologist, 108: 471–476.

    Article  CAS  Google Scholar 

  33. Dudley, M.E., Jacobs, T.W. and Long, S.R. 1987. Microscopic studies of cell division induced in alfalfa roots by Rhizobium meliloti. Planta, 171: 289–301.

    Article  Google Scholar 

  34. Fuss, K. 1956. Die Ansauerung der Nahrlosung durch Lupinis luteus und inee papier chromatographische untersuchung auf saure wurzelausschei dungen. Flora, 144: 1–46.

    CAS  Google Scholar 

  35. Graham, J.H., Leonard, R.T. and Menge, J.A. 1982. Interaction of light intensity and soil temperature with phosphorus inhibition of yam formation. New Phytologist, 91: 683–690.

    Article  CAS  Google Scholar 

  36. Gulash, M., Ames, P., La Rosiliere, R.C. and Bergman, K. 1984. Rhizobia are attracted to localized seta on legume roots. Applied Environmental Microbiology, 48: 149–502.

    CAS  Google Scholar 

  37. Habib, L. 1988. Etude de I’ Aggregation dans La Rhizosphere du Mais: Role des Mucilages Racinaires. These de Doctorat de I’ Institut National Polytechnique de Lorraine, Nancy, 115 p.

    Google Scholar 

  38. Hale, M.G. and Moore, L.D. 1979. Factors affecting root exudation. II. 1970–1978. Advances in Agronomy, 31: 93–124.

    Article  CAS  Google Scholar 

  39. Hale, M.G., Moore, L.D. and Griffen, G.J. 1978. In, “Interaction between nonpathogenic soil microorganisms and plants”. (eds. Dommergues, Y.R. and Krupa, S.V.) Elsevier, Amsterdam. pp. 163–203.

    Book  Google Scholar 

  40. Harley, J.L., Smith, S.E. 1983. Mycorrhizal Symbiosis. Academic Press, London.

    Google Scholar 

  41. Harrson, M.J. 1998. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 361–389.

    Article  Google Scholar 

  42. Helal, H.M. and Sanerbeck, D.R. 1986. Influence of plant roots on the stability of soil organic matter and of soil aggregates. Transaction of the 13th Congress of the International Soil Science Society, 3: 776–777.

    Google Scholar 

  43. Humbeck, C., Thierfelder, H., Gresshoff, P.M and Werner, D. 1985. Competitive growth of slow growing Rhizobium japonicium against fast growing Enterobacter and Psendomonas species at low concentrations of succinate and other substrates in dialysis culture. Archieves fir Microbiologie, 142: 223–228.

    Article  CAS  Google Scholar 

  44. Hussain, S. S. and Mc-Keen, WE. 1963. Interaction between Strawberry roots and Rhizoctoniafragariae. Phytopathology, 53: 541–545.

    Google Scholar 

  45. Ingham, J.L. 1972. Phytoalexins and other natural products as factors in plant disease resistance. Botanical Review 38: 343–424.

    Article  CAS  Google Scholar 

  46. Jansson, T, Nordbring Hertz, B., Tunlid, A and Oahaw, G. 1980 Chemotropic growth of germ tubes of Cochliobalus sativus to barley roots of rootexudates. Transactions of the British Mycological Society, 90: 647–650

    Google Scholar 

  47. Jastrow, J.D. and Miller, R.M. 1997. Soil aggregate stabilization and carbon sequestration feedbacks through organomineral associations. In, “Soil processes and carbon cycle”. (eds. Lal, R., Kimble, J.M., Foollett, R.F. and Stewart, B.A.) CRC Press, Boca Raton Floridia, USA, pp. 207–223.

    Google Scholar 

  48. Johnson, C.R., Menge, J.A., Schwab, S. and Ting, J.P. 1982. Interaction of photoperiod and Vesicular-arbuscular mycorrhizae on growth and metabolism of sweet orange. New Phytologist, 90: 665–669.

    Article  CAS  Google Scholar 

  49. Johnson, J.F., Vance, C.P. and Allan, D.L. 1996. Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenol pyruvate carboxylase. Plant Physiology, 112: 31–41.

    Article  PubMed  CAS  Google Scholar 

  50. Jones, D.D. and Morre, D.J. 1967. Golgi apparatus mediated polysaccharide secretion by outer root cap cells of Zea mays. II. Isolation and Characterization of the Secretary Product. Zeitxhrift Pflanzenernaehor Bodenkund, 56: 166169.

    Google Scholar 

  51. Jones, D.L. and Darrah, P.R 1995. Influx and efflux of organic acids across the soil root interface of Zea mays L. and its implications in rhizosphere C-flow. Plant and Soil, 173: 103–109.

    Article  CAS  Google Scholar 

  52. Khew, K.L. and Zentmyer, G.A. 1974. Germination of oospore of Phythium ultimum in the cotton rhizosphere. Phytopathology, 64: 500–507.

    Article  Google Scholar 

  53. Killham, K. and Yeomans, C. 2001. Rhzosphere carbon flow measurement and implications: from isotopes to reporter genes. Plant and Soil, 232: 91–96.

    Article  CAS  Google Scholar 

  54. Knudson, L. and Smith, RS. 1920. Secretion of amylase by plant roots. Botanical Gazzettee, 68: 460–466.

    Article  Google Scholar 

  55. Koshland, D.E. 1981. Biochemistry of sensing and adaptation in a simple bacterial system. Annual Review of Biochemistry, 50: 765–782.

    Article  PubMed  CAS  Google Scholar 

  56. Kraffczyk, I., Trolldenier, G. and Beringer, H. 1984. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biology and Biochemistry, 16: 315–322.

    Article  CAS  Google Scholar 

  57. Krupa, S. and Fries, N. 1971. Studies on ectomycorrhizae of pine. I. Production of volatile organic compounds. Canadian Journal of Botany, 49: 1425–1431.

    Article  CAS  Google Scholar 

  58. Laheurete, F. and Berthelin, J. 1988. Effect of phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus. Plant and Soil, 105: 11–17.

    Google Scholar 

  59. Ljunggren, M. and Fahraeus, G. 1959. Effect of Rhizobium polysaccharide on the formats on of polygalactournase in Lucerne and Clover. Nature, 184: 1578–1579.

    Article  PubMed  CAS  Google Scholar 

  60. Lyon, T.L. and Wilson, J.K. 1921. Liberation of organic matter by roots of growing plants. Memoir 40, Cornell University Agriculture Experiment Station, U.S.A

    Google Scholar 

  61. Martin, J.K. 1977. Factors influencing the loss of organic carbon from wheat roots. Soil Biology and Biochemistry, 9: 1–7.

    Article  CAS  Google Scholar 

  62. Miller, R.M. and Jastrow, J.D. 1992. The role of mycorrhizal fungi in soil conservation. In, “Mycorrhizae in Sustainable Agriculture”. (eds. Bethlenfalvay, G.J. and Linderman, R.G.) ASA Special Publiation No. 54. American Society of Agronomy, Madison, W.I., USA. pp. 29–44.

    Google Scholar 

  63. Morel, J.L., Mench, M. and Guckert, A. 1986. Measurement of Pb“, Cu” and Cd+2 binding with mucilage exudates from maize roots. Biology and Fertility of Soils, 2: 29–34.

    Article  Google Scholar 

  64. Mulligan, J.T. and Long, S.R. 1985. Induction of Rhizobium meliloti nod C expression by plant exudate requires nod D. Proceedings National Academy of Sciences, USA, 82: 6609–6613.

    Article  CAS  Google Scholar 

  65. Naqui, S.M.A. and Chauhan, S.K. 1980. Effect of root exudates on the spore germination of rhizosphere and rhizoplane microflora of chilli (Capsicum annuum L.) cultivars. Plant and Soil, 55: 397–402.

    Article  Google Scholar 

  66. Nelson, E.B. 1990. Exudate molecules initiating fungal responses to seeds and roots. Plant and Soil, 129: 61–73.

    Article  CAS  Google Scholar 

  67. Nigam, R, Srivastava Shalini, Parakash, S. and Srivastava, M.M. 2001. Cadmium mobilisation and plant availability–the impact of organic acids commonly exuded from roots. Plant and Soil, 230: 107–113.

    Article  CAS  Google Scholar 

  68. Oades, J.M. 1984. Soil organic matter and structural stability; mechanisms and implication for management. Plant and Soil, 76: 319–337.

    Article  CAS  Google Scholar 

  69. Papavizas, G.C. and Kovacs, M.F. 1972. Stimulation of spore germination of Thielaviopsis basicola by fatty acid from Rhizosphere soil. Phytopathology, 62: 688–694.

    Article  CAS  Google Scholar 

  70. Paul, E.A. and Clark, F.E. 1989. Soil Biology and Biochemistry. Academic Press. San Diego, CA.

    Google Scholar 

  71. Peters, N.K., Frost, J.W. and Long, S.R 1986. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science, 233: 977–980.

    Article  PubMed  CAS  Google Scholar 

  72. Peters, K.N. and Long, S.R. 1988. Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiology, 88: 396–400.

    Article  PubMed  CAS  Google Scholar 

  73. Prikryl, Z. and Vancura, V 1980. Root exudates ofplants. VI wheat root exudation as dependent on growth, concenteration gradient of exudates and the presence of bacteria. Plant and Soil, 13: 391–396.

    Google Scholar 

  74. Pueppke, S.G. 1984. Adsorption of slow and fast growing rhizobia to soyabean and cowpea roots. Plant Physiology, 75: 924–928.

    Article  PubMed  CAS  Google Scholar 

  75. Ratnayake, M., Leonard, R.T. and Menge, J.A. 1978. Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytologist, 81: 543–552.

    Article  CAS  Google Scholar 

  76. Reid, J.B., Goss, M.J. and Robertson, P.D. 1982. Relationship between the decrease in soil stability effect by the growth of maize roots and changes in organically bound iron and aluminium. Journal of Soil Science, 33: 397–410.

    Article  CAS  Google Scholar 

  77. Rilling, M.C., Wright, S.F., Nichols, K.A., Schmidt, W.F. and Torn, M.S. 2001. Large contribution of arbuscular mycorrhizal fungi soil carbon pools in tropical forest soils. Plant and Soil, 233: 167–177.

    Article  Google Scholar 

  78. Rolfe, B.G. and Gresshoff, P.M. 1988. Genetic analysis of legume nodule initiation. Annual Review of Plant Physiology, 39: 297–319.

    Google Scholar 

  79. Rossen, L., Schearman, C.A., Johnston, A.W.B. and Downie, J.A. 1986. The nod D gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nod ABC genes. EMBO Journal, 43: 3369–3373.

    Google Scholar 

  80. Roussel, H., Tunien, D.V., Franken, P., Gianinazzi, S. and Pearson, V.G. 2001. Signalling between arbuscular mycorrhizal fungi and plants: Identification of a gene expressed during early interactions by differential RNA display analysis. Plant and Soil, 232: 13–19.

    Article  CAS  Google Scholar 

  81. Rovira, A.D. 1965. Plant root exudates and their influence upon soil microorganisms. In, “Ecology of Soil Borne Plant Pathogens”. (eds. Baker, K.P. and Synder, W.C.), University of California Press, Berkeley. pp. 170–185.

    Google Scholar 

  82. Rovira, A.D. 1969. Plant root exudates. Botanical Review, 35: 35–37.

    Article  CAS  Google Scholar 

  83. Rovira, A.D. and Harris, J.R. 1961. Plant root excretion in releation to the rhizosphere effect V. The exudation of the B-group vitamins. Plant and Soil, 15: 199–214.

    Article  Google Scholar 

  84. Salzer, P. and Boller, T. 2000. Elicitor induced reactions in mycorrhizae and their suppression. In, “Current Advances in Mycorrhizal Research”. (eds. Podia, G.K. and Davids, D.D.) Americal Phytopathogical Society, Press, St. Paul Minnesota. pp. 1–10.

    Google Scholar 

  85. Saurbeck, D.R. and Johnsen, B. 1976. The turnover of plant roots during the growth period and its influence on soil respiration. Zeitschrift Pflanzenernaehr Bodenkund. 315–328.

    Google Scholar 

  86. Schmidt, E.L. 1979. Initiation of plant root microbe interactions. Annual Review of Microbiology. 33: 355–376.

    Article  PubMed  CAS  Google Scholar 

  87. Schönwitz, R and Ziegler, H. 1982. Exudation of water-soluble vitamins and of some carbohydrates by intact roots of maize seedling (zea mays L.) into a mineral nutrient solution. Zeitschrift Pflanzenphysiologie, 107: 7–14.

    Google Scholar 

  88. Schroth, M.N., Synder, W.C. 1961. Effect of host exudates on chdamydospores germination of the bean root rot fungus Fusarium solani F. phaseoli. Phytopathology, 51: 389–393.

    CAS  Google Scholar 

  89. Schulten, H.R. and Schnitzer, M. 1998. The chemistry of soil organic nitrogen: a review. Biology and Fertility of Soils, 26: 1–15.

    Article  CAS  Google Scholar 

  90. Schwab, S.M., Johnson, L.V., Menge, J.A. 1982. Influence of Simazine on formation of vam in Chenopodium quinone wild. Plant and Soil, 64: 283–287.

    Article  CAS  Google Scholar 

  91. Schwab, S.M., Leonard, R.T. and Menge, J.A. 1984. Quantitative and qualitative comparision of root exudates of mycorrhizal and non–mycorrhizal plant species. Canadian Journal of Botany, 62: 1227–1231.

    Article  Google Scholar 

  92. Shaw, C., Ashby, A., Loake, G., Brown, A. and Watson, M. 1988. Chemotaxis ofAgrobacterium tumefaciens is the initial step in crown gall formation. Fourth Intl. Symp. on Molecular Genetics of Plant Microbe Interactions. Acapulco, Mexico. Abstract lb: 15.

    Google Scholar 

  93. Smith, S.E. and Read, D.J. 1997. Mycorrhizal Symbiosis. Academic Press, San Diego, C.A.

    Google Scholar 

  94. Smoot, J.J., Gough, F.J., Larrey, H.A., Eichenmuller, J.J. and Gallegly, M.E. 1958. Production and germination of oospores of Phytophthora infestans. Phytopathology, 48: 165–171.

    Google Scholar 

  95. Smucker, A.J.M., Erickson, A.E. 1987. Anaerobic stimulation of root exudates and diseases of Pea. Plant and Soil, 99: 423–434.

    Article  CAS  Google Scholar 

  96. Sowden, F.J., Chen, Y. and Schnitzer, M. 1977. The nitrogen distribution in soils formed under a wide variety of climatic conditions. Geochimie Cosmochimie Acta, 41: 1524–1526.

    Article  CAS  Google Scholar 

  97. Spanik, H.P., Wijffelman, C.A., Pees, E., Okker, R.J.H. and Lugtenberg, B.J.J. 1987. Rhizobium nodulation gene nod D as a determinant of host specificity. Nature, 328: 337–339.

    Google Scholar 

  98. Stotzky, G. and Schenck, S. 1976. Observations on organic volatiles from germinating seeds and seedlings. American Journal of Botany, 63: 798–805.

    Article  CAS  Google Scholar 

  99. Subba Rao, N.S., Bidwell, R.G.S. and Bailey, D.L. 1961. The effect of Rhizosphere fungi on the uptake and metabolism of Nutrients by Tomato plants, Canadian Journal of Botany, 39: 1759–1764.

    Article  Google Scholar 

  100. Sulochana, C.B. 1968. Root exudates. Memoirs Indian Botanical Society, 1: 98–101.

    Google Scholar 

  101. Swift, R S. 1994. Organic matter characterization. In, “Methods of soil analysis”. Part 3 Chemical method, pp. 1011–1070. Soil Science Society of America No. 5, Madison, WI, USA.

    Google Scholar 

  102. Tang, C.S. and Young, C.C. 1982. Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta limpograss (Hemarthria altissima). Plant Physiology, 69: 155–160.

    Article  PubMed  CAS  Google Scholar 

  103. Turcheneck, L.W. and Oades, L.M. 1978. Organoclay Particles in Soils. In, “Modification of Soil Structure”. (eds. Emerson, W.W., Bond, R.D. and Dexter, A.R) Wiley New York. pp. 137–144.

    Google Scholar 

  104. Turgeon, B.G. and Bauer, W.D. 1985. Ultra structure of infection thread development during the infection of soyabean by Rhizobium saponicum. Planta. 163: 328–349.

    Article  Google Scholar 

  105. Van Rhijn, P. Fang, Y., Gilli, S. Shaul, O., Atzmon, N., %linger, S., Eshed, Y., Lum, M., Li, Y., Fujishige, N., Kapulnik, Y. and Hirsch, M. 1997. Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways and in forming arbuscular mycorrhizae and Rhizobium induced nodules may be conserved. Proceedings National Academy of Sciences, USA. 94: 5467–5472.

    Google Scholar 

  106. Vancura, V. 1964. Root exudates of plants. I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant and Soil, 21: 231–248.

    Google Scholar 

  107. Vancura, V and Hazlikova, A. 1972. Root exudates ofplants IV Differences in chemical composition of seed and seedlings exudates. Plant and Soil, 36: 27 1282.

    Google Scholar 

  108. Vancura, V. and Stotzky, G. 1976. Gaseous and volatile exudates from germinating seeds and seedlings. Canadian Journal of Botany, 54: 518–532.

    Article  CAS  Google Scholar 

  109. Vesper, S.J. and Bauer, W.D. 1986. Role of pili (fimbriae) in attachment of Bradyrhizobium japonicum to soyabean roots. Applied Environmental Biology, 52: 134–141.

    CAS  Google Scholar 

  110. Wolfe, A.J., Conley, M.P., Kramer, T.J. and Berg, H.C. 1987. Reconstitution of signaling in bacterial chemotaxis. Journal of Bacteriology, 169: 1878–1885.

    PubMed  CAS  Google Scholar 

  111. Wright, S.F., Franke Snyder, M., Morton, J.B. and Upadhyaya, A. 1996. Time course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, 181: 193–203.

    Article  CAS  Google Scholar 

  112. Ziegler, H. 1962. Encyclopedia of Plant Physiology, 17, No. 2, (ed. Ruhland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gupta, R., Mukerji, K.G. (2002). Root Exudate — Biology. In: Mukerji, K.G., Manoharachary, C., Chamola, B.P. (eds) Techniques in Mycorrhizal Studies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3209-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3209-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5985-7

  • Online ISBN: 978-94-017-3209-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics