Skip to main content

Methods in Study of Degradation of Mycorrhizal Roots

  • Chapter
Techniques in Mycorrhizal Studies
  • 975 Accesses

Abstract

Mycorrhizal root turnover could be determined by the same methods as applied for fine root decomposition studies. In the present paper detailed procedures for fine root decomposition i.e. litter-bag method, litter-cylinder method, split-pot inside field root chamber and ingrowth-core method are given. Three methods for the calculation of fine root biomass production i.e. the max-min method, balancing-transfer method and compartment-flow method are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlstrom, H., Persson, H. and Borjesson, T. 1988. Fertilization in a mature scots pine ( Pinus sylvestris L.) stand effects and fine roots. Plant and Soil, 106: 179–190.

    Google Scholar 

  2. Alexander, I.J. and Fairley, RI. 1983. Effect of N fertilization on population of pine roots and mycorrhizas in spruce humus. Plant and Soil, 71: 49–53.

    CAS  Google Scholar 

  3. Bansal, M. and Mukerji, K.G. 1992. Effect of VAM and Phosphorus fertilisers on Leucaena Root productivity. In “Root Ecology and its Practical Applications”. 3rd ISSR Symp. Wien“ (eds. Kutschera, L., Hiibl, E., Lichtengger, E., Persson, H. and Sobotik, M.). Verein fur Wurzet forschung, A-9020 Klagunfurt. pp. 543–545.

    Google Scholar 

  4. Bansal, M. and Mukerji, K.G. 1993. Dead fine roots-a neglected biofertiliser. In: “Plant Nutrition–from Genetic Engineering to field practice” (ed. Barrow, N.J. ). Kluwer Academic Publishers, pp. 547–550.

    Google Scholar 

  5. Banal, M. and Mukerji, K.G. 1994. Efficacy of root litter as a biofertiliser. Soil Biology Fertility, 18: 228–230.

    Article  Google Scholar 

  6. Bansal, M. and Mukerji, K.G. 1995. Positive correlation between VAM–induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza, 5: 39–44.

    Article  Google Scholar 

  7. Bansal, M. and Mukerji, K.G. 1998. The role of endomycorrhizas in fine root litter degradation. In: “Root Demographics and their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems”. 5’ ISRR Clemson University South Carolina, USA, pp. 393–401.

    Google Scholar 

  8. Bansal, M. and Mukerji, K. G. 2000. Mycorrhizosphere: interaction between rhizosphere microflora and VAM fungi. In: “Mycorrhizal Biology” (eds. Mukerji, K.G. et al.) Kluwer Academic/ Plenum Publishers. Netherlands, pp.143–152.

    Google Scholar 

  9. Bansal, M., Srivastava, D. and Mukerji, K.G. 1995 Root litter biodegradation. In: Recent Advances in Biodeterioration and Biodegradation. (eds. Garg, K.L., Garg, N. and Mukerji, K. G.). Naya Prakash, 206 Bidhan Sarani, Calcutta, pp. 363–376.

    Google Scholar 

  10. Benhamou, N., Fortin, J.A., Hamel, C. St-Arnaud, M.and Shatilla, A. 1994. Resistance responses of mycorrhizal Ri TDNA, transformed carrot roots to infection by Fusarium oxysporum fsp. chrysanthemi. Phytopathology, 84: 958–968.

    CAS  Google Scholar 

  11. Bnmdre t, M C., Bougher, N., Dell, B., Grove, T. and Malajczuk, N. 1996. Working with Mycorrhizas in Forestry and Agriculture. ACIAR Monograph Series.

    Google Scholar 

  12. Chao, W, Li, R. and Chang, W. 1988. Effect of root agglutinin on microbial activities in the rhizosphere. Applied Environmental Microbiology, 54: 1838 1841.

    Google Scholar 

  13. Conn, C.E. and Day, F.P. Jr. 1997. Root decomposition across a barrier island chronosequence: Litter quality and Environmental controls. Plant and Soil, 195: 351–364.

    Article  CAS  Google Scholar 

  14. Curl, E.A. and Truelove, B. 1986. The Rhizosphere. Springer - Verlag Berlin, Heidelberg, New York, Tokyo.

    Google Scholar 

  15. Deans, J.D. 1979. Fluctuations of Soil Environment and fine root growth in a young Sitka spruce plantation. Plant and SoiL 52: 195–208.

    Article  Google Scholar 

  16. Domisch, T., Finer, L., Karsisto, M., Laiho, R and Laine, J. 1998. Relocation of carbon from decaying litter in drained beat soils. Soil Biology and Biochemistry, 30: 1529–1536.

    Article  CAS  Google Scholar 

  17. Einsenstat, D.M. and Yanai, RD. 1997. The ecology of root lifespan. Advances in Ecological Research, 27: 1–60.

    Article  Google Scholar 

  18. Espeleta, J. F. and Einsenstat, D.M. 1998. Responses of Citrus fine roots to localised soil drying: A comparison of seedling with adult fruiting trees. Tree Physiology, 18: 113–119.

    Google Scholar 

  19. Espeleta, J.F., Einsenstat, D.M. and Graham, J.M. 1999. Citrus root responses to localised drying soil: A new approach to studying mycorrhizal effects on the roots of mature trees. Plant and Soil, 206: 1–10.

    Google Scholar 

  20. Fabio, A., Persson, H.A. and Steen, E. 1985. Growth dynamics of superficial roots in Portuguese plantations of Eucalyptus globulus Labill. studied with a mesh bag technique. Plant and Soil, 83: 233–242.

    Article  Google Scholar 

  21. Fairley, R. I. and Alexander, I. J. 1985. Methods of calculating fine root production in forests. In, “Ecological Interactions in Soil”. (eds. Fitter, A. H., Atkinson, D., Read, D. J. and Usher, M. B. ), Blackwell Scientific Publications. Oxford, London, pp. 37–42.

    Google Scholar 

  22. Fogel, R. 1983. Root turnover and productivity of coniferous forests. Plant and Soil, 71: 75–85.

    Article  Google Scholar 

  23. Fogel, R. 1985. Root as primary producers in below ground ecosystems. In: “Ecological Interactions in Soil”. (eds. A.H. Fitter, D. Atkinson, D.J. Read and M.B. Usher ), Blackwell Scientific Publications. Oxford, London, pp. 23–36.

    Google Scholar 

  24. Fogel, R. and Hunt, G. 1979. Fungal and arboreal biomass in Western Oregon Douglas-fir ecosystem–distribution patterns and turnover. Canadian Journal of Forest Research, 9: 245–256.

    Article  Google Scholar 

  25. Fogel, R. and Hunt, G. 1983. Contribution of mycorrhizae and soil fungi to nutrient cycling in Douglas-fir ecosystem. Canadian Journal of Forest Research, 13: 219–232

    Article  CAS  Google Scholar 

  26. Gaubaye, J. 1991. Biological interactions in the mycorrhizosphere. Experientia, 47: 370–375.

    Article  Google Scholar 

  27. Gavito, KM.E. and Miller, M.H. 1998. Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize. Plant and Soil, 199: 177–186.

    Article  CAS  Google Scholar 

  28. Gottsche, D. 1972. Verteilung von Feinwurzein and Mykorrhizen in Bodenprofil eines Buchen-Und. Fichten bestandes in soiling Mitt. Bund Forsh. Anst. Forest. U. Holzw No.88. Hamburg.

    Google Scholar 

  29. Graham, J.H. 1988. Interactions of mycorrhizal fungi with soil borne plant pathogens and other organisms: an introduction. Phytopathology, 78: 365366.

    Google Scholar 

  30. Graham, J.H., Eissenstat, D.M. and Drouillard, D.L. 1991. On the relationship between a plant’s mycorrhizal dependency and rate of vesicular arbuscular mycorrhizal colonization. Functional Ecology, 5: 773–779.

    Article  Google Scholar 

  31. Habte, M. and Byappanhalli, B. N. 1998. Influence of prestorage dry conditions and duration of storage on the effectiveness of root inoculum of Glomus aggregatum. Journal Plant Nutrition, 21: 1375–1389.

    Article  CAS  Google Scholar 

  32. Harley, J. L. and Smith, S.E. 1983. Mycorrhizal Symbiosis. Academic Press, London, New York.

    Google Scholar 

  33. Harris, W.F., Kinerson, R S. Jr. and Edwards, N.T. 1977. Comparison of below ground biomass of natural deciduous forest and lablolly pine plantations. Pedobiologia, 17: 369–381.

    Google Scholar 

  34. Koide, R.T. 1991. Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytologist, 117: 365–386.

    Article  CAS  Google Scholar 

  35. Lehman, J. and Zech, W. 1998. Fine root turnover of irrigated hedgerow inter cropping in Northern Kenya. Plant and Soil, 198: 19–31.

    Article  Google Scholar 

  36. Mukerji, K.G. and Bansal, M. 1998. Mycorrhizal root litter as a biofertiliser. In. “From Ethnomycology to Fungal Biotechnology” (eds. Singh, S. and Aneja, K.R) Plenum Press, U.K, pp. 205–212.

    Google Scholar 

  37. Newman, E. I. 1966. A method of estimating the total length of roots in a sample. Journal Applied Ecology, 3: 139–145.

    Article  Google Scholar 

  38. Pan, W.L. and Bolton, R.P. 1991. Root quantification by edge discrimination using a desktop scanner. Agronomy Journal. 83: 1047–1052.

    Article  Google Scholar 

  39. Paulitz, T.C. and Linderman, R. G. 1991. Mycorrhizal interactions with soil organisms. In: “Handbook of Applied Mycology Vol.l. Soil and Plants.” (eds. Arora, D.K., Rai, B., Mukerji, K.G. and Knudsen, G.K. ), Marcel Dekker, New York, pp. 77–129.

    Google Scholar 

  40. Peng, S. P., Eissenstat, D. M., Graham, J. H., Williams, H. and Hodge, N. 1993. Growth depression in mycorrhizal citrus at high phpsphorus supply: analysis of carbon costs. Plant Physiology, 101: 1063–1071.

    PubMed  CAS  Google Scholar 

  41. Persson, H. 1978. Root dynamics in a young Scots pine stand in central Sweden. Oikos, 30: 508.

    Article  Google Scholar 

  42. Persson, H. 1979. Fine root production, mortality and decomposition in forest ecosystems. Vegetatio, 41: 101–109.

    Article  Google Scholar 

  43. Phillips, J. M. and Hayman, D. S. 1970. Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55: 158–161.

    Article  Google Scholar 

  44. Publicover, D. A. and Vogt, K. A. 1993. A comparison of methods for estimating fine root production with respect to sources and error. Canadian Journal of Forest Research, 23: 508–519.

    Google Scholar 

  45. Reynolds, E.R.C. 1975. Tree rootlets and their distribution. In: “The Development and Functions of Roots”. (eds. Torrey, J.G. and Clarkson, D.T. ), Academic Press, London, pp. 163–177.

    Google Scholar 

  46. Rhodes, L.H. and Gerdemann, J.W. 1975. Phosphate uptake zones of mycorrhizal and nonmycorrhizal onions. New Phytologist, 75: 555–561.

    Article  Google Scholar 

  47. Santantonio, D. and Grace, J. C. 1987. Estimating fine root production and turnover from biomass and decomposition data: A compartment-flow model. Canadian Journal of Forest Research, 17: 900–908.

    Google Scholar 

  48. Smith, S. E. and Read, D. J. 1997. Mycorrhizal Symbiosis. Academic Press, London.

    Google Scholar 

  49. Stroble, N.E. and Sinclair, W.A. 1992. The role of mycorrhizal fungi in tree defense against fungal pathogens of roots. In: “Defense Mechanisms of Woody Plants against Fungi”. (eds. Blanchette, R.A. and Biggs, A.R. ), Springer-Verlag, New York, pp. 321–353.

    Google Scholar 

  50. Tennnant, D. 1975. A test of a modified line interest method for estimating root length. Journal of Ecology, 63: 995–1001.

    Google Scholar 

  51. Trappe, J.M. and Fogel, R. 1977. Ecosystematic functions of mycorrhizae. In: “The Below Ground Ecosystem— A Synthesis of Plant–Associated Processes”. (ed. Marshal, J.K.) 5, Range Sci. Dep. Sci. No. 26 Colo St. Univ. Fort, Collins, pp. 205–214.

    Google Scholar 

  52. Vimard, B., Arnaud, M St, Furlan,V. and Fortin, J.A. 1999. Colonisation potential of in vitro produced arbuscular mycorrhizal fungus spores compared with a root-segment inoculum from pot culture. Mycorrhiza, 8: 335–338.

    Google Scholar 

  53. Wrubleski, D.A., Murkin, H.R, Valk, A.G. Van-der, Davis, C.B. and Van-der Valk, A.G. 1997. Decomposition of litter of three mud flat annual species in a northern prairie marsh during drawdown. Plant Ecology, 129: 141–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bansal, M., Mukerji, K.G. (2002). Methods in Study of Degradation of Mycorrhizal Roots. In: Mukerji, K.G., Manoharachary, C., Chamola, B.P. (eds) Techniques in Mycorrhizal Studies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3209-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3209-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5985-7

  • Online ISBN: 978-94-017-3209-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics