Skip to main content

Genetic transformation of Populus toward improving plant performance and drought tolerance

Populus transformation, development and drought tolerance

  • Chapter
Molecular Biology of Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 66))

Abstract

Populus species are commercially important forest trees worldwide. Their practical utilization ranges from the production of quality timbers, veneer and particle board, through their use for paper and pulp production and even for non-quality application of fire wood (Olsen, 1988). As such, Populus species and hybrids are one of the major economically planted forest tree species in Europe and North America. They are also found extensively in China and India, where they have a great economical potential as a source for firewood and other applications, as well as in other countries (Zsuffa, 1985). Several Populus species were also found highly suitable for reforestation in mixed forests due to their ecological adaptation, their ability to develop a branched and efficient root system, their fast growth rate and their adaptation to tangled forest structure. Several true poplar species show high adaptability and grow well on marginal soils, and their natural shoot regeneration ability impart them an advantage in soil-conservation plantations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, M.R., 1986. Aspen. In: D.A. Evans, W.R. Sharp & P.V. Ammirato (Eds), Handbook of Plant Cell Culture. Techniques and Applications. Vol 4, pp. 627–651. Macmillan Publishing Company, New York.

    Google Scholar 

  • Ahuja, M.R., 1993. Regeneration and germplasm preservation in aspen-Populus. In: M.R. Ahuja (Ed.), Micropropagation of Woody Plants, pp. 187–194. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Ahuja, M.R. & M. Fladung, 1997. Regulation of transgene expression in Populus. Joint Meeting of the IUFRO Working Parties 2.04–07 and 2.04–06 Somatic Cell Genetics and Molecular Genetic of Trees (August 1997 ), Quebec, CA, Abstract no. 20.

    Google Scholar 

  • Akiyoshi, K., E. Matsunaga, K. Yoshida, A. Shinmyo & H. Ebinuma, 1996. Growth stimulation of hybrid aspen by introduction of peroxidase gene. 5th International Congress of Plant Molecular Biology (September 1997 ), Singapore, Abstract no. 1331

    Google Scholar 

  • Alamillo, J.M., R. Roncarati, P. Heino, R. Velasco, D. Nelson, R. Elster, G. Bemacchia, A. Furini, G. Schwall, F. Salamini & D. Bartels, 1994. Molecular analysis of desiccation tolerance in barley embryos and in the resurrection plant Craterostigma plantagineum. Agronomie 2: 161–167.

    Article  Google Scholar 

  • Alscher, R.G., 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77: 457–464.

    Article  CAS  Google Scholar 

  • Altamura, M.M., F. Capitani, L. Gazla, I Capone & P. Costantino, 1994. The plant oncogene rolB stimulates the formation of flower and root meristemoides in tobacco thin layers. New Phytol 126: 283–293.

    Article  CAS  Google Scholar 

  • Armitage, P., R. Walden & J. Draper, 1988. Vectors for the transformation of plant cells using Agrobacterium. In: J. Draper, R. Scott, P. Armitage & R. Walden R (Eds.), Plant Genetic Transformation and Gene Expression, A Laboratory Manual, pp. 1–68. Blackwell Scientific Publications Ltd., London.

    Google Scholar 

  • Arora, R. & M.E. Wisniewski, 1994. Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). II. A 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins. Plant Physiol 105: 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Arora, R., L.J. Rowland & G.R. Panta, 1997. Chill-responsive dehydrins in blueberry: Are they associated with cold hardiness or dormancy transitions? Physiol Plant 101: 8–16.

    Article  CAS  Google Scholar 

  • Baucher, M., B. Chabbert, G. Pilate, J. van Doorsselaere, M.-T. Tollier, M. Petit-Conil, D. Cornu, B. Monties, M. van Montagu, D. Inze, L. Jouanin & W. Boerjan, 1996. Red xylem and higher lignin extractability by down regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112: 1479–1490.

    PubMed  CAS  Google Scholar 

  • Blackman, S.A., S.H. Wettlaufer, R.L. Obendrof & A.C. Leopold, 1991. Maturation proteins associated with desiccation tolerance in soybean. Plant Physiol 96: 868–874.

    Article  PubMed  CAS  Google Scholar 

  • Bohnert, H.J. & E. Sheveleva, 1998. Plant stress adaptations–making metabolism move. Current Opinion Plant Biol 1: 267–274.

    Article  CAS  Google Scholar 

  • Boudet, A.M. & J. Grima-Pattena, 1996. Lignin genetic engineering. Mol Breed 2: 25–39.

    Article  CAS  Google Scholar 

  • Bradford, K.J. & P.M. Chandler, 1992. Expression of “dehydrin-like” proteins in embryos and seedlings of Zizania palustres and Oryza sativa during dehydration. Plant Physiol 99: 488–494.

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw, H.D., J.B. Hollick, T.J. Parsons, H.R.G. Clarke & M.P. Gordon, 1989. Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors. Plant Mol Biol 14: 51–59.

    Article  Google Scholar 

  • Brasileiro, A.C.M., J.C. Leple, J. Muzzin, D. Ounnoughi, M.-F. Michel & L. Jouanin, 1991. An alternative approach for gene transfer in trees using wild-type Agrobacterium strains. Plant Mol Biol 17: 441–452.

    Article  PubMed  CAS  Google Scholar 

  • Brasileiro, A.C.M., C. Tourneur, J.C. Leple, V. Combes & L. Jouanin, 1992. Expression of the mutant Arabidopsis thaliana acetolactate confers chlorsulfuron resistance to poplar. Trans Res 1: 133–141.

    Article  CAS  Google Scholar 

  • Clarke, H.R.G, J.M. Davis, S.M. Wilbert, H.D. Bradshaw & M.P. Gordon, 1994. Wound-induced and developmental activation of a poplar tree chitinase gene promoter in transgenic tobacco. Plant Mol Biol 25: 799–815.

    Article  PubMed  CAS  Google Scholar 

  • Close, T.J. 1996. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97: 795–803.

    Article  CAS  Google Scholar 

  • Close, T.J. 1997. Dehydrins: A commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100: 291–296.

    Article  CAS  Google Scholar 

  • Close, T.J., R.D. Fenton, A. Yang, R. Asghar, D.A. DeMason, D.E. Crone, N.C. Meyer & F. Moonan, 1993. Deyhydrin: The protein. In: T.J. Close & E.A. Bray (Eds.), Plant Response to Cellular Dehydration During Environmental Stress, pp. 104–118. American Society of Plant Physiologists, MA.

    Google Scholar 

  • Cornai, L., D. Facciotti, W.R. Hiatt, G. Thompson, R. Rose & D. Stalker, 1985. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317: 741–744.

    Article  Google Scholar 

  • Confalonieri, M., A. Balestrazzi & S. Bisoffi, 1994. Genetic transformation of Populus nigra by Agrobacterium tumefaciens. Plant Cell Rep 13: 256–261.

    Article  CAS  Google Scholar 

  • Confalonieri, M., A. Balestrazzi & R. Cella, 1997. Genetic transformation of Populus deltoides and P. euramericana clones using Agrobacterium tumefaciens. Plant Cell Tissue Organ Culture 48: 53–61

    Article  CAS  Google Scholar 

  • Davis, J.M., H.R.G. Clarke, H.D. Bradshaw & M.P. Gordon, 1991. Populus chitinase genes: structure, organisation, and similarity of translated sequences to herbaceous plant chitinases. Plant Mol Biol 17: 631–639.

    Google Scholar 

  • Davis, J.M., E.E. Egelkrout, G.D. Coleman, T.H.H. Chen, B.E. Haissig, D.E. Riemenschneider & M.P. Gordon, 1993. A family of wound-induced genes in Populus shares common features with genes encoding vegetative storage proteins. Plant Mol Biol 23: 135–143.

    Article  PubMed  CAS  Google Scholar 

  • Dean, J.F.D., P.R. LaFayette, K.-E.L. Eriksson & S.A. Merkle, 1997. Forest tree biotechnology. In: T. Scheper (Ed.), Biotechnology in the Pulp and Paper Industry–Advances in Biochemical Engineering Biotechnology, Vol. 57, pp. 1–44. Springer-Verlag, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • De Block, M., 1990. Factors influencing the tissue culture and the Agrobacterium tumefaciensmediated transformation of hybrid aspen and poplar clones. Plant Physiol 93: 1110–1116.

    Article  PubMed  Google Scholar 

  • De Cleene, M. & J. De Ley, 1976. The host range of crown gall. Bot Rev 42: 389–466.

    Article  Google Scholar 

  • Delbarre, A., P. Muller, V. Imhoff, H. Barbier-Brygoo, C. Maurel, N. Leblanc, C. Perrot-Rechenmann & J. Guern, 1994. The rolb gene of Agrobacterium rhizogenes does not increase the auxin sensitivity to tobacco protoplasts by modifying the intracellular auxin concentration. Plant Physiol 105: 563–569.

    PubMed  CAS  Google Scholar 

  • Devantier, Y.A., B. Moffat, C. Jones & P.J. Charest, 1993. Microprojectile-mediated DNA delivery to the Salicaceae family. Can J Bot 71: 1458–1466.

    Article  CAS  Google Scholar 

  • Dickmann, D.I. & K.W. Stuart, 1983. The Culture of Poplars in Eastern North America. Michigan State University, East Lansing.

    Google Scholar 

  • Donahue, R.A., T.D. Davis, C.H. Michler, D.E. Riemenschneider, D.R. Carter, P.E. Marquardt, N. Sankhla, D. Sankhla, B.E. Haissig & J.G. Isebrands, 1994. Growth, photosynthesis, and herbicide tolerance of genetically modified hybrid poplar. Can J For Res 24: 2377–2383.

    Article  Google Scholar 

  • Dure, L., 1993a. The LEA proteins of higher plants. In: D.P.S. Verma (Ed.), Control of Plant Gene Expression, pp. 325–335. CRC Press, Boca Raton FL.

    Google Scholar 

  • Dure, L., 1993b. Structural motifs in Lea proteins. In: T.J. Close & E.A. Bray (Eds.), Plant Response to Cellular Dehydration During Environmental Stress, pp. 91–103. American Society of Plant Physiologists, MA.

    Google Scholar 

  • Dure, L., S.C. Greenway & G.A. Galan, 1981. Developmental biochemistry of cottonseed embryogenesis and germination: XIV. Changing mRNA populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20: 4162–4168.

    Article  PubMed  CAS  Google Scholar 

  • Estruch, J.J., D. Chriqui, K. Grossmann, J. Schell & A. Spena, 1991a. The plant oncogene ro1C is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10: 2889–2895.

    Google Scholar 

  • Estruch, J.J., J. Schell & A. Spena, 1991b. The protein encoded by the rolB plant oncogene hydrolyse indole glucosides. EMBO J 10: 3125–3128.

    PubMed  CAS  Google Scholar 

  • Faiss, M., M. Strand, P. Redig, K. Dolezal, J. Hanus, H. Van Onckelen & ‘f. Schmulling, 1996, Chemically induced expression of the ro/C-encoded ß-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J 10: 33–46.

    Article  CAS  Google Scholar 

  • Fillatti, J.J., J. Sellmer, B. McCown, B. Haissing, & L. Comai, 1987. Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206: 192–199.

    Google Scholar 

  • Finch-Savage, W.E., S.K. Pramanik & J.D. Bewely, 1994. The expression of dehydrin proteins in desiccation-sensitive (recalcitrant) seeds of temperature trees. Planta 193: 478–485.

    Article  CAS  Google Scholar 

  • Fladung, M. & M.R. Ahuja, 1997. Excision of the maize transposable element AC in periclinal chimeric leaves of 35SAC ro1C transgenic aspen. Plant Mol Biol 33: 1097–1103.

    Article  PubMed  CAS  Google Scholar 

  • Fladung, M., S. Kumar & M.R. Ahuja, 1997. Genetic transformation of Populus genotypes with different chimeric gene constructs: transformation efficiency and molecular analysis. Trans Res 6: 111–121.

    Article  CAS  Google Scholar 

  • Foyer, C.H., L. Jouanin, N Souriau, S. Perret, M. Lelandais, K.-J. Kunert, G. Noctor, C. Pruvost, M. Strohm, H. Mehlhom, A. Polie & H. Rennenberg, 1994. The molecular, biochemical and physiological function of glutathione and its action in poplar. In: H. Sanderman & M. BonnetMasimbert (Eds.), Eurosilva–Contribution to Tree Physiology, pp. 141–170. INRA Editions, Paris.

    Google Scholar 

  • Foyer, C.H., N. Souriau, S. Perret, M. Lelandais, K.-J. Kunert, C. Pruvost & L. Jouanin, 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increase in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109: 1047 1057.

    Google Scholar 

  • Galau, G.A., N. Bijassoradat & D.W. Hughes, 1987. Accumulation kinetics of cotton late embryogenesis-abundant mRNAs and storage protein mRNAs: coordinate regulation during embryogenesis and the role of abscisic acid. Dev Biol 123: 198–212.

    Article  PubMed  CAS  Google Scholar 

  • Gaudin, V. T. Vrain & L. Jouanin, 1994. Bacterial genes modifying hormonal balances in plants. Plant Physiol Biochem 32: 11–29.

    CAS  Google Scholar 

  • Hajela, R.K., D.P. Horvath, S.J. Gilmour & M.F. Thomashow, 1990. Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana. Plant Physiol 93: 1246–1252.

    Article  PubMed  CAS  Google Scholar 

  • Hall, R.B., 1985. Breeding strategy for Alnus, Populus, and Salix. In: C.P. Mitchel, P.O. Nilsson & L. Zsuffa (Eds.), Proc Joint TEA Forestry Program and FAO/Cooperative Network on Rural Forest Energy, Conf and Workshops on Research in Forestry for Energy, pp. 75–95. Rungstedgaard, Denmark. Oct. 1985, Swedish Univ of Ag Sci N 49/1986.

    Google Scholar 

  • Hall, A.E. 1993. Is dehydration tolerance relevant to genotypic differences in leaf senescence and crop adaptation to dry environments? In: T.J. Close & E.A. Bray (Eds.), Plant Response to Cellular Dehydration During Environmental Stress, pp. 1–10. American Society of Plant Physiologists, MA.

    Google Scholar 

  • Hampp, R., M. Ecke, C. Schaeffer, T. Wallenda, A. Wingler, I. Kottke & B. Sundberg, 1996. Axenic mycorrhization of wild type and transgenic hybrid aspen expressing T-DNA indoleacetic acid-biosynthetic genes. Trees 11: 59–64.

    Article  Google Scholar 

  • Han, K.H., M.P. Gordon & S.H. Strauss, 1997. High frequency transformation of cottonwoods (genus Populus) by Agrobacterium rhizogenes. Can J For Res 27: 464–470.

    Article  Google Scholar 

  • Hawkins, S., J. Samaj, V. Lauvergeat, A. Boudet & J. Grima-Pattenati, 1997. Cinnamyl alcohol dehydrogenase: identification of new sites of promoter activity in transgenic poplar. Plant Physiol 113: 321–325.

    PubMed  CAS  Google Scholar 

  • Hansen, E.A. & D.A. Netzer, 1992. Weed Control Using Herbicides in Short-Rotation Intensively Cultured Poplar Plantations. USDA Forest Service Research Paper NC-260.

    Google Scholar 

  • Hayashi, H., L. Mustardy, P. Deshnium, M. Ida & N. Murata, 1997. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase & accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12: 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Hohenstein, W.G. & L.L. Wright, 1994. Biomass energy production in the United States: An overview. Biomass and Bioenergy 6: 161–173.

    Article  Google Scholar 

  • Rollick, J.B. & M.P. Gordon, 1995. Transgenic analysis of a hybrid poplar wound-inducible promoter reveals developmental patterns of expression similar to that of storage protein genes Plant Physiol 109: 73–85.

    Google Scholar 

  • Hooykaas, P.J.J. & R.A. Schilperoort, 1992. Agrobacterium and plant genetic engineering. Plant Mol Biol 19: 15–38.

    Google Scholar 

  • Iturriaga, G., K. Schneider, F. Salamini & D. Bartels, 1992. Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol 20: 555–558.

    Article  PubMed  CAS  Google Scholar 

  • Kapila, J., R. De Rycke, M. Van Montagu & G. Angenon, 1997. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 122: 101–108.

    Article  CAS  Google Scholar 

  • Kermode, A.R., 1990. Regulation mechanisms involved in the transition from seed development to germination. Crit Rev Plant Sci 9: 155–195.

    Article  CAS  Google Scholar 

  • Klein, M. T. & S. Fitzpatrick-McElligott, 1993. Particle bombardment: a universal approach for gene transfer to cells and tissues. Curr Opin Biotechol 4: 583–590.

    Article  CAS  Google Scholar 

  • Kramer, P.J. & T.T. Kozlowski, 1979. Physiology of Woody Plants. Academic Press, NY. Kramer, P.J., 1983. Water Relations of Plants. Academic Press, NY.

    Google Scholar 

  • Kurioka, Y., Y. Suzuki, H Kamada & H. Harada, 1992. Promotion of flowering and morphologival alterations in Atropa bellasonna transformed with CaMV 35S-rolC chimeric gene of the Ri plasmid. Plant Cell Rep 12: 1–6.

    Article  CAS  Google Scholar 

  • Labhilili, M., P. Joudrier & M.-F. Gautier, 1995. Characterization of cDNA encoding triticum durum dehydrins and their expression patterns in cultivars that differ in drought tolerance. Plant Sci 112: 219–230.

    Article  CAS  Google Scholar 

  • Leple, J.C., A.C.M. Brasilerio, M.-F. Michel, F. Delmotte & L Jouanin, 1992. Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11: 137–141.

    Article  CAS  Google Scholar 

  • Leple, J.C., M. Bonade-Bottino, S. Augustin, G. Pilate, V. Dumanois Le Tan, A. Delplanque, D. Cornu & L. Jouanin, 1995. Toxicity to Chrysomela tremulae (Coleopetra: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Molecular Breeding 1: 319–328.

    Article  CAS  Google Scholar 

  • Levitt, J., 1980. Responses of Plants to Environmental Stresses. Vol. II. Academic Press, New-York.

    Google Scholar 

  • Li, Y., G. Hagen & T.J. Guilfoyle, 1992. Altered morphology in transgenic tobacco plant overproduce cytokinins in specific tissues and organs. Dev Biol 153: 386–395.

    Article  PubMed  CAS  Google Scholar 

  • McCown, B.H., D.E. McCabe, D.R. Russell, D.J. Robinson, K.A. Barton & K.F. Raffa, 1991. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep 9: 590–594.

    Article  CAS  Google Scholar 

  • Michel, M.F., F. Delmotte & C. Depierreux, 1988. Transformation of hybrids Populus tremula x P. alba by Agrobacterium tumefaciens. In: M.R. Ahuja (Ed.), Somatic Cell Genetics of Woody Plants, pp. 81–95. Kluwer Academic Publishers, Boston MA.

    Chapter  Google Scholar 

  • Michler, C.H., 1994. Somatic embryogenesis in Populus spp. In: S. Jain, P. Gupta & R. Newton (Eds.), Somatic Embryogenesis in Woody Plants, pp. 89–97. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Mundy, J. & N.H. Chua, 1988. Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7: 2279–2286.

    PubMed  CAS  Google Scholar 

  • Muthalif, M.M. & L.J. Rowland, 1994. Identification of chilling-responsive proteins from floral buds of blueberry. Plant Sci 101: 41–49.

    Article  CAS  Google Scholar 

  • Nesme, X., C. Ponsonnet, C. Picard & P. Normand, 1992. Chromosomal and pTi genotypes of Agrobacterium strains isolated from Populus tumors in two nurseries. FEMS Microbiol Ecol 101: 189–196.

    CAS  Google Scholar 

  • Nilsson, O. & O. Olsson, 1997. Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100: 463–473.

    Article  CAS  Google Scholar 

  • Nilsson, O., T. Alden, F. Sitbon, C.H.A. Little, V. Chalupa, G. Sandberg & O. Olsson, 1992. Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Trans Res 1: 209–220.

    Article  CAS  Google Scholar 

  • Nilsson, O., C.H.A. Little, G. Sandberg & O. Olsson, 1996a. Expression of two heterologous promoters, Agrobacterium rhizogenes ro1C and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle growth and dormancy. Plant Mol. Biol. 31: 887–895.

    CAS  Google Scholar 

  • Nilsson, O., T. Moritz, B. Sundberg, G. Sandberg & O. Olsson, 1996b. Expression of the Agrobacterium rhizogenes ro1C gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol 112: 493–502.

    PubMed  CAS  Google Scholar 

  • Nilsson, O., H. Tuominen, B. Sundberg & O. Olsson, 1997. The Agrobacterium rhizogenes rolB and ro1C promoters are expressed in pericycle cells competent to serve as root initials in transgenic hybrid aspen. Physiol Plant 100: 456–462

    Article  CAS  Google Scholar 

  • Noctor, G., M. Strohm, L. Jouanin, K.-J. Kunert, C.H. Foyer & H. Rennenberg, 1996. Synthesis of glutathione in leaves of transgenic poplar overexpressing y-glutamyl cysteine synthetase. Plant Physiol 112: 1071–1078.

    PubMed  CAS  Google Scholar 

  • Olsen, W.L., 1988. Progress and prospect. In: A. Valentine (Ed.), Forest and Crop Biotechnology, pp. 315–334. Springer-Verlag, New-York.

    Google Scholar 

  • Ostry, M.E. & Michler, C.H., 1993. Use of biotechnology for tree improvement in Populus model systems. In: M.R. Ahuja (Ed.), Micropropagation of Woody Plants, pp. 471–483. Kluwer Academic Publisher, Dordrecht.

    Google Scholar 

  • Parsons, J.F., V.P. Sinkar, R.F. Stettler, E.W. Nester & M.P. Gordon, 1986. Transformation of poplar by Agrobacterium tumefaciens. Bio/Technology 4: 533–536.

    Article  CAS  Google Scholar 

  • Pelah, D., O. Shoseyov & A. Altman, 1995. Characterization of BspA, a major boiling stable, waterstress-responsive protein in aspen (Populus tremula). Tree Physiol 15: 673–678.

    Article  PubMed  CAS  Google Scholar 

  • Pelah, D., W.-X. Wang, O. Shoseyov, A. Altman & D. Bartels, 1997. Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol Plant 99: 153–159.

    Article  CAS  Google Scholar 

  • Piquemal, J., C. Lapierre, K. Myton, A. O’Connell, W. Schuch, J. Grima-Pettenati & A.M. Boudet, 1998. Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13: 71–83.

    Article  CAS  Google Scholar 

  • Potrykus, I., R. Bilang, J. Futterer, C. Sautter, M. Schrott & G. Spangenberg, 1998. Genetic engineering of crop plants. In: A. Altman (Ed.), Agricultural Biotechnology. pp. 119–159. Marcel Dekker, NY.

    Google Scholar 

  • Pythoud, F., V.P. Sinkar, E.W. Nester & M.P. Gordon, 1987. Increased virulence of Agrobacterium rhizogenes conferred by the vir region of pTiBo542: application to genetic engineering of poplar. Bio/Tech 5: 1323–1327.

    Article  Google Scholar 

  • Rhodes, D., S. Handa & R. Bressan, 1986. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol 82: 890–903.

    Article  PubMed  CAS  Google Scholar 

  • Riemenschneider, D., B.E. Haissig, J. Sellmer & J. Fillatti, 1988. Expression of an herbicide tolerance gene in young plants of a transgenic hybrid poplar clone. In: M.R. Ahuja (Ed.), Somatic Cell Genetics of Woody Plants. pp. 73–80. Kluwer Academic Publishers, Boston.

    Chapter  Google Scholar 

  • Rohde, A., M. Van Montagu, D. Inze & W. Boerjan, 1997. Factors regulating the expression of cell cycle genes in individual buds of Populus. Planta 201: 43–52.

    Article  CAS  Google Scholar 

  • Russell, J.A. & B.H. McCown, 1988. Recovery of plants from leaf protoplasts of hybrid-poplar and aspen clones. Plant Cell Rep 7: 59–62.

    Article  Google Scholar 

  • Schmulling, T., J. Schell & A. Spena, 1988. Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7: 2621–2629.

    PubMed  CAS  Google Scholar 

  • Schmulling, T., J. Schell & A. Spena, 1989. Promoters of the rolA, B and C genes of Agrobacterium rhizogenes are differently regulated in transgenic plants. Plant Cell 1: 665–670.

    PubMed  CAS  Google Scholar 

  • Schneider, K., B. Well, E. Schmelzer, F. Salamini & D. Bartels, 1993. Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst Planta 189: 120–131.

    CAS  Google Scholar 

  • Schwartzenberg, K.V., P. Doumas, L. Jouanin & G. Pilate, 1994 Enhancement of endogenous cytokinin concentration in poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiol 14: 27–35.

    Article  Google Scholar 

  • Sellmer, J.C. & B.H. McCown, 1989. Transformation in Populus spp. In: Y.P.S. Bajaj (Ed.), Plant Protoplasts and Genetic Engineering II, pp. 155–172. Springer-Verlag, Berlin/Heidelberg.

    Chapter  Google Scholar 

  • Shani, Z., E. Shpigel, L. Roiz, R. Goren, B. Vinocur, T. Tzfira, A. Altman & O. Shoseyov, 1998a. Cellulose binding domain increases cellulose synthase activity in Acetobacter xylinum,and biomass of transgenic plants. In: A. Altman, S. Izhar & M. Ziv (Eds.), Plant Biotechnology and In Vitro Biology in the 21st Century. Kluwer Academic Publishers (in press).

    Google Scholar 

  • Shani, Z, M. Dekel, G. Tsabary, C.S. Jensen, T. Tzfira, R. Goren, A. Altman & O. Shoseyov, 1998b. Expression of Arabidopsis thaliana endo–1–4–3–glucanase (cell) in transgenic poplar plants. In: A. Altman, S. Izhar & M. Ziv (Eds.), Plant Biotechnology and In Vitro Biology in the 21st Century. Kluwer Academic Publishers (in press).

    Google Scholar 

  • Shen, W.H., E. Davioud, C. David, H. Barbier-Brygoo, J. Tempe & J. Guern, 1990. High sensitivity to auxin is a common feature of hairy root. Plant Physiol. 94: 544–560.

    Article  Google Scholar 

  • Siemens, J & O. Schieder, 1996. Transgenic plants: genetic transformation–recent developments and the state of art. Plant Tissue Culture and Biotechnology 2: 66–75.

    Google Scholar 

  • Sitbon, F., S. Hennion, B. Sundberg, C.H. Anthony Little, O. Olsson & G. Sandberg, 1992. Transgenic tobacco plants coexpressing the Agrobacterium tumefaciens iaaM and iaah genes display altered growth and indoleacetic acid metabolism. Plant Physiol 99: 1062–1069.

    Article  PubMed  CAS  Google Scholar 

  • Shiver, K. & J. Mundy, 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 26: 503–512.

    Google Scholar 

  • Smith, I.K., A. Polie & H. Rennenberg, 1990. Glutathione. In: R.G. Alscher & J.R. Cumming (Eds.), Stress Responses in Plants, Adaptation and Acclimation Mechanisms, pp 201–205. Wiley-Liss Inc. New York.

    Google Scholar 

  • Son, S.H., H.K. Moon & R.B. Hall, 1993. Somaclonal variation in plants regenerated from callus culture of hybrid aspen (Populus alba x P. grandidentata Michx.). Plant Sci 90: 89–94.

    Article  CAS  Google Scholar 

  • Strauss, S.H, W.H. Rottmann, A.M. Brunner & L.A. Sheppard, 1995. Genetic engineering of reproductive sterility in forest trees. Mol Breeding 1: 5–26.

    Article  CAS  Google Scholar 

  • Tsai, C.-J., G.K. Podila, & V.L. Chiang, 1994. Agrobacterium-mediated transformation of quaking aspen (Populus tremuloides) and regeneration of transgenic plants. Plant Cell Rep 14: 94–97.

    Google Scholar 

  • Tuominen, H., F. Sitbon, C. Jacobsson, G. Sandberg, O. Olsson & B. Sundberg, 1995. Altered growth and wood charecteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid-biosynthetic genes. Plant Physiol 109: 1179–1189.

    PubMed  CAS  Google Scholar 

  • Tzfira, T., H. Ben-Meir, A. Vainstein & A. Altman, 1996. Highly efficient transformation and regeneration of aspen plants through shoot-bud formation in root culture. Plant Cell Rep 15: 566–571.

    Article  CAS  Google Scholar 

  • Tzfira, T., C.S. Jensen, A. Vainstein & A. Altman, 1997. Agrobacterium tumefaciens-mediated transformation of Populus tremula L. through direct shoot regeneration from stem segments. Physiol Plant 99: 554–561.

    Google Scholar 

  • Tzfira, T., A. Zuker & A. Altman, 1998. Forest tree biotechnology: genetic transformation and its application to future forests. Trends in Biotechnology 16: 439–446.

    Article  CAS  Google Scholar 

  • Van Blockland, R., P. de Lange, J.M.M. Mol & J.M. Kooter, 1993. Modulation of gene expression in plants by antisense genes. In: B. Lebleu (Ed.), Antisense Research and Applications. pp. 125–148. CRC Press, Boca Raton.

    Google Scholar 

  • Van Doorsselaere, J., M. Baucher, E. Chognot, B. Chabbert, M.-T. Tollier, M. Petit-Conil, J.C. Leple, G. Pilate, D. Cornu, B. Monties, M. van Montagu, D. Inze, W. Boerjan & L. Jouanin, 1995. A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid 0methyltransferase activity. Plant J 8: 855–864.

    Article  Google Scholar 

  • Van der Salm, T.P.M., C.J.G. van der Toorn, R. Bouwer, C.H. Hanisch ten Cate & H.J.M. Dons, 1997. Production of rol gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Molecular Breeding 3: 39–47.

    Article  Google Scholar 

  • Wang, G.J., S. Castiglione, Y. Chen, L. Li, Y.F. Han, Y.C. Tian, D.W. Gabriel, Y.N. Han, K.Q. Mang & F. Sala, 1996. Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Trans Res 5: 289–301.

    Article  CAS  Google Scholar 

  • Weigel, D. & O. Nilsson, 1995. A development switch sufficient for flower intiation in diverse plants. Nature 377: 495–500.

    Article  PubMed  CAS  Google Scholar 

  • Winton, L.L., 1968. Plantlet formation in aspen tissue culture. Science 160: 1234–1235.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski, M., T.J. Close, T. Artlip & R. Arora, 1996. Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in back tissues of eight species of woody plants. Physiol Plant 96: 496–505.

    Article  CAS  Google Scholar 

  • Xu, D., X. Duan, B. Wang, B. Hong, T.-H.D. Ho & R. Wu, 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110: 249–257.

    PubMed  CAS  Google Scholar 

  • Zeldin, E.L. & B. McCown, 1986. The dynamics of poplar root culture and the differentiation of shoots from cultured roots. HortScience 21: 815.

    Google Scholar 

  • Zhan, X., S. Kawai, Y. Katayama & N. Morohoshi, 1997. A new approach based on leaf disc method for Agrobacterium mediated transformation and regeneration of aspen. Plant Sci 123: 105–112.

    Article  CAS  Google Scholar 

  • Zsuffa, L., 1985. Concepts and experiences in clonal plantations of hardwoods. Proc. 19th Meeting of Clonal Forestry: The Canadian Tree Improvement Association, Can For Serv, pp. 12–25.

    Google Scholar 

  • Zuker, A., T. Tzfira & A. Vainstein, 1998. Recent advances in genetic engineering of cut flowers. Biotechnology Advances 16: 33–79.

    Article  PubMed  CAS  Google Scholar 

  • Zupan, J. R. & P. Zambryski, 1995. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107: 1041–1047.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tzvi, T., Wang, W., Arie, A. (2000). Genetic transformation of Populus toward improving plant performance and drought tolerance. In: Jain, S.M., Minocha, S.C. (eds) Molecular Biology of Woody Plants. Forestry Sciences, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2313-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2313-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5427-2

  • Online ISBN: 978-94-017-2313-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics