Skip to main content

Photon Emission from Perturbed and Dying Organisms — The Concept of Photon Cycling in Biological Systems

  • Chapter
Integrative Biophysics

Abstract

Biological organisms are open systems as they exchange energy E, information Inf and mass m with their environment (Fig. 1). They achieve the degree of spaciotemporal order (infrastructure) necessary for survival through the flow of metabolic free energy ΔG. To maintain this order and a steady-state (a dynamic equilibrium) requires that the rate of entropy S production inside the open system dS i / dt is balanced by the rate of external entropy S e production as shown in Fig. 1:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnhold, J. (2001) Application of chemiluminescence methods in the investigation of redox regulation in cells. In Chemiluminescence at the Turn of the Millenium, Albrecht, S., Zimmermann,T. and Brandt, H. ( eds. ), Schweda-Werbedruck GmbH Dresden, pp. 85–94.

    Google Scholar 

  2. Devaraj, B., Usa, M. and Inaba, H. (1997) Biophotons: Ultraweak light emission from living systems. Curr. Opin. Solid State Mat. Sci., 2, 188–193.

    Article  ADS  Google Scholar 

  3. Kobayashi, M. Takeda, M., Sato, T., Yamazaki, Y., Kaneko, K., Ito, K.-I., Kat, H. and Inaba, H. (1999) In vivo imaging of spontaneous ultraweak photon emission from a rats’ brain correlated with cerebral energy metabolism and oxidative stress. Neurosci. Res., 34, 103–113.

    Google Scholar 

  4. Slawinski, J., Ezzahir, A., Godlewski, M., Kwiecinska, T., Rajfur, Z. Sitko, D. and Wierzuchowska, D. (1992) Stress-induced photon emission from perturbed organisms. Experientia, 48, 1041–1058.

    Google Scholar 

  5. Slawinska, D., Polewski, K. and Slawinski, J. (1992) The stress-induced electromagnetic emission from biosystems: chemiluminescence response of plants to mechanical and chemical damage. Bioelectrochem. Bioenerg, 28, 483–488.

    Article  Google Scholar 

  6. Kochel,B. (1990, 1995 ) Perturbed living organisms: a cybernetic approach founded on photon emission stochastic processes. Kybernetes 19, 16–25; Perturbed living organisms: a cybernetic approach to oscillatory luminescence. Kybernetes, 24, 53–76.

    Article  Google Scholar 

  7. Beloussov, L., Popp, F.A., Voeikov, V. and van Wijk, R. (eds) (2000) Biophotonics and Coherent Systems. Moscow University Press, Moscow.

    Google Scholar 

  8. Gurwitsch, A.A. and Livanova, T.T. (1980) Relationship between mitogenetic radiation and unbalanced molecular organization. Bul. Exper. Biol. Med. 89 (2), 179–180 (Russich).

    Google Scholar 

  9. Lepeschkin, W. (1934) Nekrobiotische Strahlung. Protoplasma, 21, 594–597.

    Article  Google Scholar 

  10. Perelygin, V.V. and Tarusov, B.N. (1966) Enhanced ultraweak radiation from injured tissues. Biofizika, 11, 539–541.

    Google Scholar 

  11. Reiber, H.-O. (1989) Discrimination between different types of low-level luminescence in mammalian cells: the biophysical radiation. J. Biolumin. Chemilumin., 4, 245–248.

    Article  Google Scholar 

  12. Ruth, B. (1978) Experimental investigation of low-level photon emissio., Electromagnetic Bioinformation, Popp, F.A., Becker, G., Konig, H.L. and Peschka, W. (eds.), Urban u. Schwarzenberg, Munchen, Baltimore, pp. 128–143.

    Google Scholar 

  13. Godlewski, M., Kwiecinska, T., Laszczka, A., Rajfur, Z., Slawinski, J., SzczesniakFabianczyk, B. and Wierzuchowska, D. (1997) Diagnostic value of ultraweak chemiluminescence of cells subjected to the oxidative stress. Cur. Topics Biophys., 21 (1), 96101.

    Google Scholar 

  14. Rajfur, Z. ( 1994, 1993) Photon emission from chemically perturbed yeast cells. J. Biolumin. Chemilumin. 9, 59–63; Photon emission from chemically perturbed normal and SOD-deficient yeast cells. Bioluminescence and Chemiluminescence Status Report, Szalay, A.A., Kricka, L.J., Stanley, P., John Wiley and Sons, Chichester, (eds.) New York pp. 486–490.

    Google Scholar 

  15. Slawinski, J. (1988) Diagnosis of stress-induced perturbations of biohomeostasis evaluated by photon emission. Zesz. Nauk. Akad. Roln. w Krakowie, 233,session 20, 53–66.

    Google Scholar 

  16. Slawinski, J. (1990) Necrotic photon emission in stress and lethal interactions. Curr. Topics Biophys., 19, 8–27.

    Google Scholar 

  17. Slawinski, J. (1991) Ultraweak luminescence and perturbations of biohomeostasis. B.ological Luminescence, Jezowska-Trzebiatowska, B., Kochel, B., Slawinski, J. and Strek., W., World Scientific, Singapore 1990, pp.49-T7; Stress-induced biological luminescence. Trends Photochem. Photobiol. 2, 289–308.

    Google Scholar 

  18. Godlewski, M., Rajfur, Z., Slawinski, J., Kobayashi, M. Usa, M. and Inaba, H. (1993) Spectra of the formaldehyde-induced ultraweak luminescence from yeast cells. J. Photochem. Photobiol. B: Biol., 21, 29–35.

    Article  Google Scholar 

  19. Rajfur, Z., Kabyashi, M. and Slawinski, J. (submitted to Luminescence 2002 ) Ultraweak luminescence from yeast-trichloracetic acid-interactions.

    Google Scholar 

  20. Jaskowska, A., Milczarek, I., Borc, R. Zolnierczuk, R., Slawinski, J. and E. Spiewla (1996) Ascorbic acid and metabolic activity of plant cell. Folia Histochem. Cytochem., 34 (S2), 12.

    Google Scholar 

  21. Jaskowska, A., Borc, R., Dudziak, A. and Spiewla, E. (1999) Oscillatory character of changes in ultraweak luminescence from Nitella cells. Acta Soc. Bot. Polon., 68, 281–285.

    Google Scholar 

  22. Jaskowska, A., Borc, R., Milczarek, I., Dudziak, A. and Spiewla, E. (2001) Kinetic studies of ultraweak luminescence induced by ascorbic acid in Characeae cells and their structures. Luminescence, 16 51–56.

    Article  Google Scholar 

  23. Jaskowska, A. and Gorski, Z. (2000) Electrical and luminescence responses of Characeae cells induced by local anaesthetics. Molecular and Physiological Aspectsof Regulatory Processes of the Organism, 9-th Int. Symp. Molec. Cell. Biol. UNESCO/PAS, Lach, H. (ed.) Wydawnictwo Nauk. AP, Krakow, pp. 184–186.

    Google Scholar 

  24. Gorski, Z., Slawinski, J. and Lach, H. (submitted for publication 2002 ) Photon emmission imaging from mice subjected to stress and lethal factors. Acta Bio. Cracov. Ser. Zool.

    Google Scholar 

  25. Buttke, T.M. and Sandstrom, P.A. (1995) Redox regulation of programmed cell death in lymphocyten. Free Radic. Res., 22, 389–397.

    Article  Google Scholar 

  26. Dirngal, U. Landauer, U. and Them, A. (1995) Global cerebral ischemia in the rat:online monitoring of oxygen free radical production using chemiluminescence in vivo. J. Cerebral Blood Flow Metab., 15, 929–940.

    Google Scholar 

  27. Isojima, Y., Isoshima, T., Nagai, K., Kikuchi, K. and Nakagawa, H. (1995) Ultraweak bioluminescence detected from rat hippocampal slices. NeuroReport, 6, 658–660.

    Google Scholar 

  28. Slawinski, J. ( 1987, 1989, 2000) Electromagnetic radiation and the afterlife. J. Near-Death Studies, 6, 69–136; Energetic-informational aspects of necrotic aura: an electromagnetic model of the metaphysical transformation. Proc. 2-nd Int. Conf. Paranormal Res., Colorado State University, June 1–4., pp.122–135, Necrotic radiation - the Requiem for dying cells. Int. Conf. Biophoton Emission and Coherence, Int. Inst. Biophysics, September 110, Neuss, Germany. Invited lecture.

    Google Scholar 

  29. Popp, F.A. (1989) Coherent photon storage of biological systems, in: Electromagnetic Bio-Information, Popp, F.A. et al.(eds.), Urban u. Schwarzenberg, II edit., Muniche, Wien, Baltimore, pp. 144–167.

    Google Scholar 

  30. Popp, F.A., Li, K.H. and Gu, Q. (1992) Recent Advances in Biophoton Research and its Applications, World Scientific, Singapore, London.

    Google Scholar 

  31. Chang, J.J., Fisch, J. and Popp, F.A. (1998) Biophotons, Kluwer Academic Publishers, Dordrecht, Boston, London.

    Google Scholar 

  32. Chwirot, W.B., Dygdala, R.S. and Chwirot, S. (1985) Optical coherence of white-lightinduced photon emission from microsporocytes of Larix europea Mill. Cytobios, 44, 239–249.

    Google Scholar 

  33. Smith, C.W. and Best, S. (1989) Electromagnetic Man, Dent, J.M. and Sons (eds.) Ltd, London.

    Google Scholar 

  34. Smith, C.W. (1990) Bioluminescence, Coherence and Biocommunication, in, Biological Luminescence, Jezowska-Trzebiatowska, B. Kochel, B„ Slawinski, J. and Strek, W. (eds.), World Scientific, Singapore, pp. 3–18.

    Google Scholar 

  35. Frohlich, H. and Kramer, F. (1983) Coherent excitation in biological systems. Springer Verlag, Heidelberg.

    Book  Google Scholar 

  36. Smith, C.W., Jafary-Asl, A.H., Choy, R.Y.S. and Monro, J.A. (1987) The emission of low intensity electromagnetic radiation from multiple allergy patients and other biological systems. Photon Emission from Biological Systems, Jezowska-Trzebiatowska, B. Kochel, B., Slawinski, J. and Strek, W. (eds.), World Scientific, Singapore, pp. 110–126

    Google Scholar 

  37. Tilbury, R.N. (1992) The effect of stress factors on the spontaneous photon emission from microorganisms. Experientia, 48, 1030–1041.

    Article  Google Scholar 

  38. Nordenstroem, B.E. (1992) Biologically Closed Electric Circuits. Clinical, Experimental and Theoretical Evidence for an Additional Cirlulatory Systems. Nordic Medical Publishing, Stockholm, 1978; Link between external electromagnetic field and biological matter. Int. J. Environmental Studies, 41, 233–250.

    Article  Google Scholar 

  39. Cilento, G. (1988) Photobiochemstry without light. Experientia, 44, 572–576.

    Article  Google Scholar 

  40. Lakhovsky, G. (1939) The Secret of Life, trs. M. Clement, Heinemann, London.

    Google Scholar 

  41. Young, A.M. (1976) The Reflexive Universe. Delacorte Press/Seymour Lawrence, San Francisco.

    Google Scholar 

  42. Inaba, H. (1995) Ultraweak biophoton imaging and information characterization. Ultrafastand ultraparallel Optoelectronics, Sueta, T. and Okoshi, T., Ohmsha/John Wiley and Sons, Tokyo, pp. 570–580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Slawinski, J. (2003). Photon Emission from Perturbed and Dying Organisms — The Concept of Photon Cycling in Biological Systems. In: Popp, FA., Beloussov, L. (eds) Integrative Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0373-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0373-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6228-4

  • Online ISBN: 978-94-017-0373-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics