Skip to main content

Plasma membrane electron transport and the control of cellular redox status and circadian rhythms

  • Chapter
  • 210 Accesses

Abstract

Although it may not seem evident at first instance, there is increasing evidence indicating the contribution of plasma membrane redox phenomena to changes in the cellular redox status and to the perception and transduction of circadian rhythms. This evidence originates from highly diverse organisms suggesting its occurrence in various kingdoms. As an example, proteins that are suggested to be involved in blue light photoperception in Arabidopsis (NPH1) and Neurospora (WC-1) show homology and may contain redox sensitive domains. Another example constitutes the plasma membrane specific form of nitrate reductase (PMNR). This enzyme has recently been demonstrated to posses a circadian oscillating activity. The PMNR therefore includes a particularly clear example of plasma membrane redox activity and its coupling to circadian rhythmicity. Major changes in the redox status of the plant cell are induced under oxidative stress conditions. It is of particular interest that a number of antioxidative enzymes including catalase (Cat3), SOD (Cu/Zn SOD) and glutathion reductase show circadian oscillations in their activity. Finally, the disulfide-thiol interchange activity of a particular plasma membrane NADH oxidase from plant and animal cells showed an ultradian pattern. Thus, despite the fact that the possible coupling of circadian rhythmicity and cellular redox status is not yet understood at the molecular level, distinct experiments suggest the possible involvement of plasma membrane components.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998) Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature 392: 720–723

    Article  PubMed  CAS  Google Scholar 

  • Anderson SL, Kay SA (1996) Illuminating the mechanism of the circadian clock in plants. T Plant Sci 1: 51–57

    Article  Google Scholar 

  • Anderson SL, Kay SA (1997) Phototransduction and circadian clock pathways regulating gene transcription in higher plants. Adv Genet 35: 1–34

    Article  PubMed  CAS  Google Scholar 

  • Aparicio PJ, Witt FG, Ramirez JM, Quinones MA, Balandfn T. (1994) Blue-light induced pH changes associated with NO3-, NO2 and Cl uptake by the green alga Monoraphidium braunü. Plant Cell Environ 17: 1323–1330

    Article  CAS  Google Scholar 

  • Asard H, Horemans N, Caubergs Ri (1992) Transmembrane electron transport in ascorbateloaded plasma membrane vesicles from higher plants involves a b-type cytochrome. FEBS Lett 306: 143–146

    Article  PubMed  CAS  Google Scholar 

  • Asard H, Horemans N, Caubergs RJ (1995) Involvement of ascorbic acid and a b-type cytochrome in plant plasma membrane redox reactions. Protoplasma 184: 36–41

    Article  CAS  Google Scholar 

  • Asard H, Bérczi A, Caubergs RJ (1998) Plasma membrane redox systems and their role in biological stress and disease. Kluwer Academic Publishers, Dordrecht, pp 320

    Google Scholar 

  • Athwal GS, Huber JL, Huber SC (1998) Phosphorylated nitrate reductase and 14–3–3 proteins.

    Google Scholar 

  • Site of interaction, effects of ions, and evidence for an amp–binding site on 14–3–3 proteins. Plant Physiol 118: 1041–1048

    Google Scholar 

  • Ballario P, Talora C, Galli D, Linden H, Macino G (1998) Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol Microbiol 29: 719–729

    Article  PubMed  CAS  Google Scholar 

  • Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15: 1650–1657

    PubMed  CAS  Google Scholar 

  • Baylies MK, Bargiello TA, Jackson FR, Young MW (1987) Changes in the abundance or structure of the per gene product can alter periodicity of the Drosophila clock. Nature 326: 390–392

    Article  PubMed  CAS  Google Scholar 

  • Bérczi A, Van Gestelen P, Pupillo P (1998) NAD(P)H-utilizing flavo-enzymes in the plant plasma membrane. In: Asard H, Bérczi A, Caubergs RJ (eds.), Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease, pp. 33–67 Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Borgeson CE, Bowman BJ (1985) Blue light-reducible cytochromes in membrane fractions from Neurospora crassa. Plant Physiol 78: 433–437

    Article  PubMed  CAS  Google Scholar 

  • Borgeson CE, Bowman BJ (1990) Mutations that affect circadian rhythms in Neurospora crassa can alter the reduction of cytochromes by blue light. J Biol Rhythms 1990 5: 291301

    Google Scholar 

  • Caboche M, Rouze P (1990) Nitrate reductase: a target for molecular and cellular studies in higher plants. Trends Genet 6: 187–192

    Article  PubMed  CAS  Google Scholar 

  • Campbell WH (1996) Nitrate reductase biochemistry comes of age. Plant Physiol 111: 355361

    Google Scholar 

  • Colepicolo P, Camarero VC, Hastings JW (1992) A circadian rhythm in the activity of superoxide dismutase in the photosynthetic alga Gonyaulax polyedra. Chronobiol Int 9: 266–268

    Article  PubMed  CAS  Google Scholar 

  • Coté GG, Lakin-Thomas PL, Brody S (1996) Membrane lipids and circadian rhythms in Neurospora crassa. In: Vanden Driessche Th, Guisset J-L, Petiau-deVries GM (eds) Membranes and Circadian Rhythms, pp 13–46, Springer-Verlag, Berl in Heidelberg.

    Chapter  Google Scholar 

  • Douglas P, Moorhead G, Hong Y, Morrice N, MacKintosh C (1998) Purification of a nitrate reductase kinase from Spinacea oleracea leaves, and its identification as a calmodulindomain protein kinase. Planta 206: 435–442

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC (1993) Genetic analysis of circadian clocks. Annu Rev Physiol 55: 683–728

    Article  PubMed  CAS  Google Scholar 

  • Edery I, Rutila JE, Rosbash M (1994) Phase shifting of the circadian clock by induction of the Drosophila period protein. Science 263: 237–40

    Article  PubMed  CAS  Google Scholar 

  • Erdei L, Szegeletes Zs, Barabos KN, Pestenacz A, Fülöp K, Kalmar L, Kovacs A, Toth B, Dér A (1998) Environmental stress and the biological clock in plants: changes of rhythmic behaviour of carbohydrates, antioxidant enzymes and stomatal resistance by salinity. J Plant Physiol 152: 265–271

    Article  CAS  Google Scholar 

  • Esterbauer H, Grill D, Welt R (1990) Der jahreszeitliche Rhytmus des Acorbinsäuresystems in Nadeln von Picea ables. Zeitschr Pflanzenphysiol 98: 393–402

    Google Scholar 

  • Fritz B, Kasai S, Matsui K (1989) Free cellular riboflavin is involved in phase shifting the circadian clock of Neurospora crassa by light. Plant Cell Physiol 30: 557–564

    CAS  Google Scholar 

  • Fritz BJ, Kasai S, Matsui K (1990) Blue light photoreception in Neurospora circadian rhythm: evidence for involvement of the flavin triplet state. Photochem Photobiol 51: 607610

    Google Scholar 

  • Horemans N, Asard H, Caubergs Ri (1997) An ascorbate carrier of higher plant plasma membranes preferentially translocates the fully oxidized (dehydroascorbate) molecule. Plant Physiol 114: 1247–1253

    PubMed  CAS  Google Scholar 

  • Horemans N, Asard H, Caubergs RJ (1998) Carrier mediated uptake of dehydroascorbate into higher plant plasma membrane vesicles shows trans-stimulation. FEBS Lett 421: 41–44

    Article  PubMed  CAS  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278: 2120–2123

    Google Scholar 

  • Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotech 6: 153–158

    Article  Google Scholar 

  • Jones G J, Morel FMM (1988) Plasmalemma redox activity in the diatom Thalassiosira. A possible role for nitrate reductase. Plant Physiol 87: 143–147

    Google Scholar 

  • Jones TL, Tucker DE, Ort DR (1998) Chilling delays circadian pattern of sucrose phosphate synthase and nitrate reductase activity in tomato. Plant Physiol 118: 149–158

    Article  PubMed  CAS  Google Scholar 

  • Lakin-Thomas PL, Coté GG, Brody S (1990) Circadian rhythms in Neurospora crassa: biochemistry and genetics. Crit Rev Microbiol 17: 365–416

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL, Cashmore AR (1996) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269: 968–970

    Article  Google Scholar 

  • Liu Y, Garceau NY, Loros JJ, Dunlap JC (1997) Thermally regulated translational control of FRQ mediates aspects of temperature responses in the Neurospora circadian clock. Cell 89: 477–486

    Article  PubMed  CAS  Google Scholar 

  • Lüthje S, Döring O, Heuer S, Lüthen H, Böttger M (1997) Oxidoreduction in plant plasma membranes. Biochim Biophys Acta 1331: 81–102

    Article  PubMed  Google Scholar 

  • McClung CR (1997) Regulation of catalases in Arabidopsis. Free Radic Biol Med 23: 489496

    Google Scholar 

  • Merrow MW, Garceau NY, Dunlap JC (1997) Dissection of a circadian oscillation into discrete domains. Proc Natl Acad Sci U S A 94: 3877–3882

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ (1998) NADH oxidase: a multifunctional ectoprotein of the eukaryotic cell surface. In Asard H, Bérczi A, Caubergs RJ (eds). Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease. pp. 121–156.

    Google Scholar 

  • Kluwer Academic Publishers, Dordrecht Morré DJ, Morré DM (1998) NADH oxidase activity of soybean plasma membranes oscillates with a temperature compensated period of 24 min. Plant J 16: 277–284

    Article  Google Scholar 

  • Munoz V, Butler WL (1975) Photoreceptor pigment for blue light in Neurospora crassa. Plant Physiol 55: 421–426

    Article  PubMed  CAS  Google Scholar 

  • Paietta J, Sargent ML (1981) Photoreception in Neurospora crassa: correlation of reduced light sensitivity with flavin deficiency. Proc Natl Acad Sci U S A 78: 5573–5577

    Article  PubMed  CAS  Google Scholar 

  • Pilgrim ML, Caspar T, Quail PH, McClung CR (1993) Circadian and light-regulated expression of nitrate reductase in Arabidopsis. Plant Mol Biol 23: 349–364

    Article  PubMed  CAS  Google Scholar 

  • Polidoros AN, Scandalios JG (1998) Circadian expression of the maize catalase Cat3 gene is highly conserved among diverse maize genotypes with structurally different promoters. Genetics 149: 405–415

    PubMed  CAS  Google Scholar 

  • Ramalho CB, Hastings JW, Colepicolo P (1995) Circadian oscillation of nitrate reductase activity in Gonyaulax polyedra is due to changes in cellular protein levels. Plant Physiol 1995 107: 225–231

    Article  Google Scholar 

  • Redinbaugh MG, Sabre M, Scandalios JG (1990) Expression of the maize Cat3 catalase gene is under the influence of a circadian rhythm. Proc Natl Acad Sci U S A 87: 6853–6857

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg T (1996) The complex circadian system of Gonyaulax polyedra. Physiol Plant 96: 733–737

    Article  CAS  Google Scholar 

  • Roenneberg T, Foster RG (1997) Twilight times: light and the circadian system. Photochem Photobiol 66: 549–561

    Article  PubMed  CAS  Google Scholar 

  • Sargent ML, Briggs WR, Woodward DO (1966) The circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol 42: 529–613

    Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalases in plants: gene structure, properties, regulation and expression. In: Scandalios JG (ed.). Oxidative Stress and the Molecular Biology of Antioxidant Defences. pp 343–406.

    Google Scholar 

  • Cold Spring Harbor Laboratory Press (vol 34), New York

    Google Scholar 

  • Schupp R, Rennenberg H (1988) Diurnal changes in the glutathione content of spruce needles (Picea abies L.). Plant Sci 57: 113–117

    Article  CAS  Google Scholar 

  • Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H, Moriya T, Shibata S, Loros JJ, Dunlap JC, Okamura H (1997) Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPerl transcript. Cell 26: 10431053

    Google Scholar 

  • Stöhr C (1998) Plasma membrane-bound nitrate reductase in algae and higher plants. In Asard H, Bérczi A, Caubergs RJ (eds). Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease. pp. 102–119. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Stöhr C, Tischner R, Ward MR (1993) Characterization of the plasma-membrane-bound nitrate reductase in Chlorella saccharophila ( Krüger) Nadson. Planta 191: 79–85

    Google Scholar 

  • Stöhr, C. (1999) Relationship of nitrate supply with growth rate, plasma membrane-bound and cytosolic nitrate reductase, and tissue nitrate content in tobacco plants. Plant Cell Environ 22: 169–178

    Article  Google Scholar 

  • Stöhr. C, Schuler F, Tischner R (1995) Glycosyl-phosphatidylinositol-anchored proteins exist in the plasma membrane of Chlorella saccharophila ( Krüger) Nadson: Plasma membrane-bound nitrate reductase as an example. Planta 196: 284–287

    Google Scholar 

  • Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS, Sancar A (1998) Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282: 1490–1494

    Article  PubMed  CAS  Google Scholar 

  • Tischner R, Ward MR, Huffaker RC (1989) Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana. Planta 178: 19–24

    Article  PubMed  CAS  Google Scholar 

  • Vincentz M, Caboche M (1991) Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants. EMBO J 10: 1027–1035

    Google Scholar 

  • Ward MR, Grimes HD, Huffaker RC (1989) Latent nitrate reductase activity is associated with the plasma membrane of corn roots. Planta 177: 470–475

    Article  PubMed  CAS  Google Scholar 

  • Wildi B, Lütz C (1996) Antioxidant composition of selected high alpine plant species from different altitudes. Plant cell Environm 19: 138–146

    Article  CAS  Google Scholar 

  • Willekens H, Inzé D, Van Montagu M, van Camp W (1995) Catalases in plants. Mol Breeding 1: 207–228

    Article  CAS  Google Scholar 

  • Zeng H, Qian Z, Myers MP, Rosbash M (1996) A light-entrainment mechanism for the Drosophila circadian clock. Nature 380: 129–35

    Article  PubMed  CAS  Google Scholar 

  • Zhong HH, McClung CR (1996) The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol Gen Genet 251: 196–203

    PubMed  CAS  Google Scholar 

  • Zhong HH, Painter JE, Salome PA, Straume M, McClung CR (1998) Imbibition, but not release from stratification, sets the circadian clock in Arabidopsis seedlings. Plant Cell 10: 2005–2018

    PubMed  CAS  Google Scholar 

  • Zhong HH, Resnick AS, Straume M, Robertson McClung C (1997) Effects of synergistic signalling by phytochrome A and cryptochromel on circadian clock-regulated catalase expression. Plant Cell 9: 947–955

    Article  PubMed  CAS  Google Scholar 

  • Zhong HH, Young JC, Pease EA, Hangarter RP, McClung CR (1994) Interactions between light and the circadian clock in the regulation of CAT2 expression in Arabidopsis. Plant Physiol 104: 889–898.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thérèse Vanden Driessche Jean-Luc Guisset Ghislaine M. Petiau-de Vries

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Asard, H., Horemans, N., Potters, G., Caubergs, R.J. (2000). Plasma membrane electron transport and the control of cellular redox status and circadian rhythms. In: Driessche, T.V., Guisset, JL., Petiau-de Vries, G.M. (eds) The Redox State and Circadian Rhythms. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9556-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9556-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5516-3

  • Online ISBN: 978-94-015-9556-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics