Skip to main content

Ustilago maydis, the Causative Agent of Corn Smut Disease

  • Chapter
Book cover Fungal Pathology

Abstract

Smut diseases are caused by Basidiomycetes of the order Ustilaginales. Their occurrence is worldwide and cereals and grasses serve as most common hosts. Among the estimated 1100 species of smut fungi the most prevalent causing significant losses in yield are of the genus Ustilago, causing loose smut of oats (U. avenae),barley (U. nuda) and wheat (U. tritici), covered smut of barley and oats (U. hordei), causing corn (U. maydis) and sugarcane smut (U. scitaminea), respectively; of the genus Tilletia inducing covered smut or bunt of wheat (T. caries and T. foetida), dwarf bunt of wheat (T. contraversa); and of the genus Sporisorium causing smut diseases in sorghum as well as head smut in sorghum and corn (see Agrios, 1988). In general, the host range of most smut fungi is rather narrow and only closely related plant species are infected. Many smut fungi develop within the grain kernels and replace them with masses of dark teliospores resembling smut or soot, giving the name to this disease. As a result considerable losses in yield are encountered and healthy seed is contaminated with spores during harvest. While some smuts infect germinating seedlings and grow internally without causing symptoms until flowering occurs others are able to infect all aerial parts of the plant and cause local disease symptoms around the site of infection. The most prominent disease symptoms are inflorescences which are completely smutted and in which all individual kernels are replaced by masses of dark teliospores. Initially the developing spores are surrounded by a membrane that breaks when teliospore development is completed and sets free the massive amounts of spores. In other instances, like infections with U. maydis,spore development takes place within plant tumors that are induced by the fungus and appear to provide the ideal environment for fungal proliferation and teliospore production. Teliospores developing within the infected tissue are invariably diploid. Upon germination meiosis takes place and the haploid form, the so-called sporidium is generated. These haploid forms can be propagated on artificial media in the laboratory, however, this form is unable to cause disease when applied to host plants in pure culture. Prerequisite for generating the infectious stage is the mating of two compatible, haploid sporidia and the generation of the dikaryon. In contrast to the haploid form this stage cannot be propagated outside the host plant. Once in contact with the plant characteristic infection structures are produced that allow penetration and subsequent proliferation within the infected plant. This leads to the characteristic disease symptoms already described and culminates with the formation of teliospores which represent the resting stage able to survive harsh environmental conditions like drought and winter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrios, C.N. (1988) Plant Pathology. Academic Press, inc., San Diego.

    Google Scholar 

  • Apel-Birkhold, P.C. and Walton, J.D. (1996) Cloning, disruption, and expression of two endo-beta 1, 4xylanase genes, XYL2 and XYL3, from Cochliobolus carbonum. Appl. Envirom. Microbiol., 62, 4129–4135.

    CAS  Google Scholar 

  • Asante Owusu, R.N., Banham, A.H., Bohnert, H.U., Mellor, E.J. and Casselton, L.A. (1996) Heterodimerization between two classes of homeodomain proteins in the mushroom Coprinus cinereus brings together potential DNA-binding and activation domains. Gene, 172, 25–31.

    Article  Google Scholar 

  • Bakkeren, G. and Kronstad, J.W. (1993) Conservation of the b mating-type gene complex among bipolar and tetrapolar smut fungi. Plant Cell, 5, 123–136.

    PubMed  CAS  Google Scholar 

  • Bakkeren, G. and Kronstad, J.W. (1994) Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in basidiomycetous smut fungi. Proc. Natl. Acad. Sci USA, 91, 7085–7089.

    Article  PubMed  CAS  Google Scholar 

  • Bakkeren, G. and Kronstad, J.W. (1996) The pheromone cell signaling components of the Ustilago a mating-type loci determine intercompatibility between species. Genetics, 143, 1601–1613.

    PubMed  CAS  Google Scholar 

  • Bakkeren, G., Gibbard, B., Yee, A., Froeliger, E., Leong, S. and Kronstad, J. (1992) The a and b loci of Ustilago maydis hybridize with DNA sequences from other smut fungi. Mol. Plant. Microbe. Interact., 5, 347–355.

    Article  PubMed  CAS  Google Scholar 

  • Banuett, F. (1991) identification of genes governing filamentous growth and tumor induction by the plant pathogen Ustilago maydis. Proc. Natl. Acad. Sci. USA,88 3922–3926.

    Google Scholar 

  • Banuett, F. (1992) Ustilago maydis, the delightful blight. Trends Genet., 8, 174–180.

    CAS  Google Scholar 

  • Banuett, F. and Herskowitz, 1. (1989) Different a alleles are necessary for maintenance of filamentous growth but not for meiosis. Proc. Natl. Acad. Sci. USA, 86, 5878–5882.

    Article  PubMed  CAS  Google Scholar 

  • Banuett, F. and Herskowitz, I. (1994a) identification of fuzz, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev, 8, 1367–1378.

    Google Scholar 

  • Banuett, F. and Herskowitz, I. (1994b) Morphological transitions in the life cycle of Ustilago maydis and their genetic control by the a and b loci. Exp. Mycol., 18, 247–266.

    Article  Google Scholar 

  • Banuett, F. and Herskowitz, I. (1996) Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development, 122, 2965–2976.

    CAS  Google Scholar 

  • Basse, C.W., Lottspeich, F., Steglich, W. and Kahmann, R. (1996) Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis. Eur. J Biochem, 242, 648–656

    Article  CAS  Google Scholar 

  • Basse, C.W., Stumpferl, S. and Kahmann, R. (2000) Characterization of a Ustilago maydis gene specifically induced during the biotrophic phase: evidence for negative as well as positive regulation. Mol. Cell. Biol., 20, 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Billett, E.E. and Burnett, J.H. (1978) The host-parasite physiology of the maize smut fungus, Ustilago maydis. I I. Translocation of 14C-labelled assimilates in smutted maize plants. Physiol. Plant Pathol, 12, 103–112.

    Article  CAS  Google Scholar 

  • Bohlmann, R. (1996) Isolierung and Charakterisierung von filamentspezifisch exprimierten Genen aus Ustilago maydis. Fakultät fur Biologie. Ludwig-Maximilians-Universität, München.

    Google Scholar 

  • Bohlmann, R., Schauwecker, F., Basse, C. and Kahmann, R. (1994) Genetic regulation of mating and dimorphism in Ustilago maydis. in Daniels, M.J. (ed.) Advances in Molecular Genetics of Plant-Microbe Interactions. Kluwer Acad. Publ., Dordrecht, Vol. 3, pp. 239–245.

    Google Scholar 

  • Bölker, M., Genin, S., Lehmler, C. and Kahmann, R. (1995a) Genetic regulation of mating, and dimorphism in Ustilago maydis. Can. J. Bot., 73, 320–325.

    Article  Google Scholar 

  • Bölker, M., Böhnert, H.U., Braun, K.H., Görl, J. and Kahmann, R. (1995b) Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Mol. Gen. Genet., 248, 547–552.

    Article  PubMed  Google Scholar 

  • Bölker, M., Urban, M. and Kahmann, R. (1992) The a mating type locus of U. maydis specifies cell signaling components. Cell, 68, 441–450.

    Article  PubMed  Google Scholar 

  • Bowen, A.R., Chen-Wu, J.L., Momany, M., Young, R., Szaniszlo, P.J. and Robbins, P.W. (1992) Classification of fungal chitin synthases. Proc. Natl. Acad. Sci. USA, 89, 519–523.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, D.H. (1946) Sporidial fusion in Ustilago maydis. J. Agric. Res., 72, 233–243.

    CAS  Google Scholar 

  • Brefeld, O. (1883) Untersuchungen aus dem Gesammtgebiet der Mykologie., Heft 5, 67–75.

    Google Scholar 

  • Brefeld, O. (1895) Untersuchungen aus dem Gesammtgebiet der Mykologie., Heft 11, 52–92.

    Google Scholar 

  • Callow, LA. and Ling, I.T. (1973) Histology of neoplasms and chlorotic lesions in maize seedlings following the infection of sporidia of Ustilago maydis (DC) Corda. Physiol. Plant Pathol, 3, 489–494.

    Article  Google Scholar 

  • Casselton, L.A. and Kües, U. (1994) Mating type genes in homobasidiomycetes. in Wessels, J.G.H. and

    Google Scholar 

  • Meinhardt, F. (eds.), The Mvcota I: Growth.Differentiation and Sexuality. Springer-Verlag, Heidelberg, pp. 307–321.

    Google Scholar 

  • Christensen, J.J. (1963) Corn smut induced by Ustilago maydis. Amer. Phytopathol. Soc. Monogr., 2.

    Google Scholar 

  • Cubitt, A.B., Heim, R., Adams, S.R., Boyd, A.E., Gross, L.A. and Tsien, R.Y. (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci., 20, 448–455.

    Article  PubMed  CAS  Google Scholar 

  • Day, A.W. and Poon, N.H. (1975) Fungal fimbriae. II. Their role in conjugation in Ustilago violacea. Can. J. Microbial., 21, 547–57.

    Article  CAS  Google Scholar 

  • Day, P.R. and Anagnostakis, S.L. (1971) Corn smut dikaryon in culture. Nature New Biol., 231, 19–20.

    Article  PubMed  CAS  Google Scholar 

  • Day. P.R., Anagnostakis, S.L. and Puhalla, J.E. (1971) Pathogenicity resulting from mutation at the b locus of Ustilago maydis. Proc. Nall. Acad. Sci. USA, 68, 533–535.

    Article  Google Scholar 

  • Dürrenberger, F. and Kronstad, J. (1999) The ukcl gene encodes a protein kinase involved in morphogenesis, pathogenicity and pigment formation in Ustilago maydis. Mol. Gen. Genet., 261, 281–289.

    Article  Google Scholar 

  • Dürrenberger, F., Wong, K. and Kronstad, J.W. (1998) identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc. Natl. Acad Sci. USA,95, 5684–5689.

    Google Scholar 

  • Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P. and Trent, J.M. (1999) Expression profiling using cDNA ~microarrays. Nat. Genet., 21, 10–14.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, H.G. (1958) Nuclear behavior in mycelium of a solopathogenic line and in a cross of two haploid lines of Ustilgo maydis (DC.) Cda. Mycologia, 50, 622–627.

    Article  Google Scholar 

  • Fischer, G.W. and Holton, C.S. (1957) Biology and control of the smut fungi. Ronald Press Co., New York.

    Google Scholar 

  • Fletcher, H.L. (1981) A search for synaptonemal complexes in Ustilago maydis. J Cell Sci., 50, 171–180.

    CAS  Google Scholar 

  • Gaudet, D.A., Gusse, J. and Laroche, A. (1998) Origins and inheritance of chromosome-length polymorphisms in the barley covered smut fungus, Ustilago hordei. Curr. Genet, 33, 216–224.

    Article  CAS  Google Scholar 

  • Gillissen, B., Bergemann, J., Sandmann, C., Schröer, B., Bölker, M. and Kahmann, R. (1992) A twocomponent regulatory system for selflnon-self recognition in Ustilago maydis. Cell, 68, 647–657.

    Article  PubMed  CAS  Google Scholar 

  • Gold. S.E., Duncan, G., Barrett, K. and Kronstad, J. (1994) cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev, 8, 2805–2816.

    Google Scholar 

  • Gold, S.E. and Kronstad, J.W. (1994) Disruption of two genes for chitin synthase in the phytopathogenic fungus Ustilago maydis. Mol. Microbial., 11, 897–902.

    Article  CAS  Google Scholar 

  • Gold, S.E., Brogdon, S.M., Mayorga, M.E. and Kronstad, J.W. (1997) The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell, 9, 1585–1594.

    PubMed  CAS  Google Scholar 

  • Hanna, W.F. (1929) Studies in the physiology and cytology of Ustilago =eae and Sorosporiunt reilianum. Phytopathology, 19, 415–443.

    Google Scholar 

  • Hartmann, H.A., Kahmann, R. and Bölker, M. (1996) The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J., 15, 1632–1641.

    CAS  Google Scholar 

  • Hartmann, H.A., Krüger, J., Lottspeich, F. and Kahmann, R. (1999) Environmental signals controlling sexual development of the corn Smut fungus Ustilago maydis through the transcriptional regulator PrfI. Plant Cell, 11, 1293–1306.

    PubMed  CAS  Google Scholar 

  • Hoecker, U., Vasil, I.K. and McCarty, D.R. (1995) Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-I of maize. Genes Dev., 9, 2459–2469.

    Article  PubMed  CAS  Google Scholar 

  • Holden D.W., Kronstad J.W. and Leong, S.A. (1989) Mutation in a heat-regulated hsp70 gene of Ustilago maydis. EMBO J, 8, 1927–1934.

    CAS  Google Scholar 

  • Holliday, R. (1961) The genetics of Ustilago maydis. Genet. Res. Comb., 2, 204–230.

    Article  Google Scholar 

  • Holliday, R. (1965) Induced mitotic crossing-over in relation to genetic replication in synchronously dividing cells of Ustilago maydis. Genet. Res. Camb., 6, 104–120.

    Article  Google Scholar 

  • Jacobs, C.W., Mattichak, S.J. and Knowles, J.F. (1994) Budding patterns during cell cycle of the maize smut pathogen Ustilago maydis. Can. J. Bot., 72, 1675–1680.

    Article  Google Scholar 

  • Kahmann, R. and Basse, C. (1999) REMI (Restriction Enzyme Mediated Integration) and its impact on the isolation of pathogenicity genes in fungi attacking plants. Eur. J. Plant Pathol., 105, 221–229.

    Article  CAS  Google Scholar 

  • Kahmann, R., Basse, C. and Feldbrügge, M. (1999) Fungal-plant signalling in the Ustilago maydis-maize pathosystem. Curr. Opin. Microbial., 2, 647–650.

    Article  CAS  Google Scholar 

  • Kämper,.1., Reichmann, M., Romeis, T., Bölker, M. and Kahmann, R. (1995) Multiallelic recognition: nonselfdependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell, 81, 73–83.

    Article  Google Scholar 

  • Keon,.I.P., Jewitt, S. and Hargreaves, J.A. (1995) A gene encoding _-adaptin is required for apical extension growth in Ustilago maydis. Gene, 162, 141–145.

    Article  Google Scholar 

  • Kinscherf, T.G. and Leong, S.A. (1988) Molecular analysis of the karyotype of Ustilago maydis. Chromosoma, 96, 427–433.

    Article  CAS  Google Scholar 

  • Klee, H. and Estelle, M. (1991) Molecular genetic approaches to plant hormone biology. Annu. Rev. Plant Phvsiol. Plant Mol. Biol., 42, 529–551.

    Article  CAS  Google Scholar 

  • Kronstad, J.W. and Leong, S.A. (1990) The b mating-type locus of Ustilago maydis contains variable and constant regions. Genes Dev., 4, 1384–1395.

    Article  PubMed  CAS  Google Scholar 

  • Kronstad, J.W. and Staben, C. (1997) Mating type in filamentous fungi. Annu. Rev. Genet., 31, 245–276.

    Article  PubMed  CAS  Google Scholar 

  • Krüger, J.. Loubradou, G., Regenfelder, E., Hartmann, A. and Kahmann, R. (1998) Crosstalk between cAMP and pheromone signalling pathways in Ustilago maydis. Mol Gen Genet, 260, 193–198.

    Google Scholar 

  • Kusch, G. and Schanz, K. (1989) Light and electron microscopic studies of chlamydospore development in Ustilago maydis (Ustilaginales, Basidiomycetes). Ctypt. Bot., 1, 230–235.

    Google Scholar 

  • Laity, C., Giasson, L., Campbell, R. and Kronstad, J. (1995) Heterozygosity at the b mating-type locus attenuates fusion in Ustilago maydis. Curr. Genet., 27, 451–459.

    Article  CAS  Google Scholar 

  • Lange, R. and De Wit, P.J. (1998) Fungal avirulence genes: structure and possible functions. Fungal Genet. Biol., 24, 285–297.

    Google Scholar 

  • Lehmler, C., Steinberg, G., Snetselaar, K. M., Schliwa, M., Kahmann, R. and Bölker, M. (1997) Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO J., 16, 3464–3473.

    Article  CAS  Google Scholar 

  • Leong, S.A. and Expert, D. (1989) In Nester, E. and Kosuge, T. (eds.), Plant-Microbe interactions-a molecular genetic perspective, McGraw-Hill, New York, NY, pp. 62–83.

    Google Scholar 

  • Liang, P. and Pardee, A.B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 257, 967–971.

    Article  PubMed  CAS  Google Scholar 

  • Liang. Z. and Biggin, M.D. (1998) Eve and ftz regulate a wide array of genes in blastoderm embryos: the selector homeoproteins directly or indirectly regulate most genes in Drosophila. Development, 125, 44714482.

    Google Scholar 

  • Lichter, A. and Mills, D. (1997) Fill, a G-protein alpha-subunit that acts upstream of CAMP and is essential for dimorphic switching in haploid cells of Ustilago hordei. Mol Gen Genet, 256, 426–435.

    Article  CAS  Google Scholar 

  • Luo, Y., Ullrich, R.C. and Novotny, C.P. (1994) Only one of the paired Schi_ophyllum commune A alpha mating-type, putative homeobox genes encodes a homeodomain essential for A alpha-regulated development. Mol. Gen. Genet., 244, 318–324.

    Article  PubMed  CAS  Google Scholar 

  • Lutman, B.F. (1910) Some contributions to the life history and cytology of the smuts. Trans. Wisconsin Acad. Sci., 16, 1191–1244.

    Google Scholar 

  • Madhani. H.D. and Fink, G.R. (1998) The control of filamentous differentiation and virulence in fungi. Trends Cell Biol., 8, 348–353.

    Article  Google Scholar 

  • Mayorga, M.E. and Gold, S.E. (1999) A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence. Mol. Microbiol., 34, 485–497.

    Article  PubMed  CAS  Google Scholar 

  • McC luskey, K., Agnan, J. and Mills, D. (1994) Characterization of genome plasticity in Ustilago hordei. Curr. Genet, 26, 486–493.

    Article  Google Scholar 

  • Mei, B., Budde, A.D. and Leong, S.A. (1993) sidl, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc. Natl. Acad. Sci. LI S A, 90, 903–907.

    Google Scholar 

  • Millis, L..I. and Kotze, J.M. (1981) Scanning electron microscopy of the germination, growth and infection of Ustilago maydis on maize. Phytopth. Z., 102, 21–27.

    Google Scholar 

  • Mills. L.J. and Van Staden, J. (1978) Extraction of cytokinins from maize, smut tumors of maize and Ustilago maudis cultures. Phvsiol. Plant Pathol., 13, 73–80.

    Google Scholar 

  • Miner, J.N. and Yamamoto, K.R. (1991) Regulatory crosstalk at composite response elements. Trends Biochein. Sci., 16. 423–426.

    CAS  Google Scholar 

  • Müller, P., Aichinger, C., Feldbrügge, M. and Kahmann, R. (1999) The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis. Molecular Microbiology, 34, 1007–1017.

    Article  Google Scholar 

  • O“Donell, K. (1992) Ultrastructure of meiosis and the spindle pole body cycle in freeze-substituted basidia of the smut fungi Ustilago maudis and Ustilago avenae. Can. J. Bot.,70, 629–638.

    Google Scholar 

  • O“Donell. K.L. and McLaughlin, D.J. (1984a) Ultrastructure of meiosis in Ustilago maydis. Mycologia,76, 468–485.

    Google Scholar 

  • O’Donell. K.L. and McLaughlin, D.J. (1984b) Postemeiotic mitosis, basidiospore development, and septation in Ustilago maydis. Mvcologia, 76, 486–502.

    Google Scholar 

  • Plamann. M., Minke, P.F., Tinsley, J.H. and Bruno, K.S. (1994) Cytoplasmic dynein and actin-related protein Arpl are required for normal nuclear distribution in filamentous fungi. J. Cell Biol., 127, 139–149.

    Article  Google Scholar 

  • Poon, H. and Day, A.W. (1974)’Fimbriae’ in the fungus Ustilago violacea. Nature,250, 648–649.

    Google Scholar 

  • Poon, N.H. and Day, A.W. (1975) Fungal fimbriae. I. Structure, origin, and synthesis. Can. J. Bot, 21, 537–546.

    CAS  Google Scholar 

  • Puhalla, J.E. (1968) Compatibility reactions on solid medium and interstrain inhibition in Ustilago maydis. Genetics, 60. 461–474.

    PubMed  CAS  Google Scholar 

  • Puhalla, J.E. (1969) The formation of diploids of Ustilago maydis on agar medium. Phytopathology, 59, 1771–1772.

    PubMed  CAS  Google Scholar 

  • Puhalla, J.E. (1970) Genetic studies on the b incompatibility locus of Ustilago maydis. Genet. Res. Camb., 16, 229–232.

    Article  Google Scholar 

  • Rawitscher, F. (1912) Beiträge zur Kenntnis der Ustilagineen I. Ztschr. Bot., 4, 673–706.

    Google Scholar 

  • Regenfelder, E., Spellig, T., Hartmann, A., Lauenstein, S., Bölker, M. and Kahmann, R. (1997) G proteins in Ustilago maydis: Transmission of multiple signals? EMBOJ., 16, 1934–1942.

    Article  CAS  Google Scholar 

  • Romeis, T., Kämper, J. and Kahmann, R. (1997) Single-chain fusions of two unrelated homeodomain proteins trigger pathogenicity in Ustilago maydis. Proc. Natl. Acad. Sci. USA, 94, 1230–1234.

    Article  CAS  Google Scholar 

  • Rowell, J.B. (1955) Functional role of compatibility factors and an in vitro test for sexual compatibility with haploid lines of Ustilag=eae. Phytopathology, 45, 370–374.

    Google Scholar 

  • Rowell, J.B. and DeVay, J.E. (1954) Genetics of Usti/ago:ea in relation to basic problems of its pathogenicity. Phytopathology, 44, 356–362.

    Google Scholar 

  • Ruiz-Herrera, J., Leon Claudia, G., Guevara-Olvera, L. and Carabez-Trejo, A. (1995) Yeast-mycelial dimorphism of haploid and diploid strains of Ustilago maydis. Microbiology, 141, 695–703.

    Article  CAS  Google Scholar 

  • Ruiz-Herrera, J., Leon, C.G., Carabez-Trejo, A. and Reyes-Salinas, E. (1996) Structure and chemical composition of the cell walls from the haploid yeast and mycelia! forms of Ustilago maydis. Fungal Genet. Biol., 20, 133–142.

    Article  CAS  Google Scholar 

  • Schauwecker, F., Wanner, G. and Kahmann, R. (1995) Filament-specific expression of a cellulase gene in the dimorphic fungus Ustilago maydis. Biot Chem. Hoppe-Seyler, 376, 617–625.

    Article  CAS  Google Scholar 

  • Schiestl, R.H. and Petes, T.D. (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A, 88, 7585–7589.

    Article  CAS  Google Scholar 

  • Schlesinger, R., Kahmann, R. and Kämper, J. (1997) The homeodomains of the heterodimeric bE and bW proteins of Ustilago maydis are both critical for function. Mol. Gen. Genet., 254, 514–519.

    PubMed  CAS  Google Scholar 

  • Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schäfer, W., Martin, T., Herskowitz, 1. and Kahmann, R. (1990) The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell, 60, 295–306.

    CAS  Google Scholar 

  • Sleumer, H.O. (1932) Über Sexualität und Zytologie von Ustilago:eae (Beckm.) Unger. Z. Bolan., 25, 209263.

    Google Scholar 

  • Snetselaar, K.M. (1993) Microscopic observation of Usti/ago maydis mating interactions. Exp. Mycol., 17, 345–355.

    Article  Google Scholar 

  • Snetselaar, K.M. and Mims, C.W. (1992) Sporidial fusion and infection of maize seedlings by the smut fungus Ustilago maydis. Mycologia, 84, 193–203.

    Article  Google Scholar 

  • Snetselaar, K.M. and Minis, C.W. (1993) Infection of maize stigmas by Usti/ago maydis: Light and electron microscopy. Phytopathology, 83, 843–850.

    Article  Google Scholar 

  • Snetselaar, K.M. and Mims, C.W. (1994) Light and electron microscopy of Ustilago maydis hyphae in maize. Mycol. Res., 98, 347–355.

    Article  Google Scholar 

  • Snetselaar, K.M. and McCann, M.P. (1997) Using microdensitometry to correlate cell morphology with the nuclear cycle in Ustilago maydis. Mycologia, 89, 689–697.

    Article  Google Scholar 

  • Snetselaar, K.M., Boelker, M. and Kahmann, R. (1996) Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet. Biol., 20, 299–312.

    Google Scholar 

  • Sokolovskaya, I.V. and Kuznetsov, L.V. (1984) Gibberellin-like substances in the mycelium of haploid and diploid strains of the smut fungus Ustilago-=eae. Appl. Biochem. Microbiol., 20, 397–401.

    Google Scholar 

  • Spellig, T., Boelker, M., Lottspeich, F., Frank, R.W. and Kahmann, R. (1994) Pheromones trigger filamentous growth in Ustilago maydis. EMBO J., 13, 1620–1627.

    CAS  Google Scholar 

  • Spellig, T., Bottin, A. and Kahmann, R. (1996) Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol. Gen. Genet., 252, 503–509.

    CAS  Google Scholar 

  • Steinberg, G. (1998) Organelle transport and molecular motors in fungi. Fungal Genet. Biol., 24, 161–177.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, G., Schliwa, M., Lehmler, C., Boelker, M., Kahmann, R. and McIntosh, J.R. (1998) Kinesin from the plant pathogenic fungus Usti/ago maydis is involved in vacuole formation and cytoplasmic migration. J. Cell Sci., 111, 2235–2246.

    PubMed  CAS  Google Scholar 

  • Trueheart, J. and Herskowitz, L (1992) The a locus governs cytoduction in Ustilago maydis. J. Bacteriol., 174, 7831–7833.

    CAS  Google Scholar 

  • Tsukiyama. T. and Wu, C. (1997) Chromatin remodeling and transcription. Curr. Opin. Genet. Dev., 7, 182–191.

    Article  Google Scholar 

  • Tsukuda, T., Carleton, S., Fotheringham, S. and Holloman, W.K. (1988) Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. Mol. Cell. Biol., 8, 3703–3709.

    CAS  Google Scholar 

  • Tudzynski, B. (1999) Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects. Appl. Microbiol. Biotechnol., 52, 298–310.

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski, B., Kawaide, H. and Kamiya, Y. (1998) Gibberellin biosynthesis in Gibberellafujikuroi: cloning and characterization of the copalyl diphosphate synthase gene. Curt - . Genet., 34, 234–240.

    Article  CAS  Google Scholar 

  • Turin, G. and Hamilton, R.H. (1960) Chemical detection of 3-indolylacetic acid in Ustilago -eae tumors. Biochetn. Biophvs. Acta, 41, 148–150.

    Google Scholar 

  • Urban, M., Kahmann, R. and Bölker, M. (1996a) Identification of the pheromone response element in Ustilago maydis. Mol. Gen. Genet., 251, 31–37.

    PubMed  CAS  Google Scholar 

  • Urban, M., Kahmann, R. and Bölker, M. (1996b) The biallelic a mating type locus of Ustilago maydis: remnants of an additional pheromone gene indicate evolution from a multiallelic ancestor. Mol. Gen. Genet., 250, 414–420.

    PubMed  CAS  Google Scholar 

  • Walter, J.M. (1934) The mode of entrance of Ustilago =eae into corn. Phytopathology, 24, 1012–1020.

    Google Scholar 

  • Wang, J., Holden, D.W. and Leong, S.A. (1988) Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc. Natl. Acad. Sci. USA, 85, 865–869.

    Article  CAS  Google Scholar 

  • Wedlich-Söldner, R., Bölker, M., Kahmann, R. and Steinberg, G. (2000) EMBO J., submitted

    Google Scholar 

  • Wessels,.I.G.H. (1996) Fungal hydrophobins: proteins that function at an interface. Trends Plant Sci., 1, 9–15.

    Article  Google Scholar 

  • Wolf, F.T. (1952) The production of indole acetic acid by Ustilago -eae, and its possible significance in tumor formation. Proc. Natl. Acad. Sci. USA, 38, 106–111.

    Article  PubMed  CAS  Google Scholar 

  • Wong, G.J. and Wells, K. (1985) Modified bifactorial incompatibility in Trernella mesenterica. Trans. Br. Mycol. Soc., 84, 95–109.

    Article  Google Scholar 

  • Wösten, H.A., Bohlmann, R., Eckerskorn, C., Lottspeich, F., Bölker, M. and Kahmann, R. (1996) A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago mardis. EMBO J., 15, 4274–4281.

    Google Scholar 

  • Xoconostle-Cazares, B., Leon-Ramirez, C. and Ruiz-Herrera, J. (1996) Two chitin synthase genes from Ustilago maydis. Microbiology, 142, 377–387.

    Article  CAS  Google Scholar 

  • Xoconostle-Cazares, B., Specht Charles, A., Robbins Phillips, W., Liu, Y., Leon, C. and Ruiz-Herrera, J. (1997) Umchs5, a gene coding for class IV chitin synthase in Ustilago maydis. Fungal Genet. Biol., 22, 199–208.

    Article  CAS  Google Scholar 

  • Xu, J. and Day Alan, W. (1992) Multiple forms of fimbriae on the sporidia of corn smut, Ustilago maydis. Int. J. Plant Sci., 153, 531–540.

    Article  Google Scholar 

  • Yee, A.R. and Kronstad, J.W. (1993) Construction of chimeric alleles with altered specificity at the b incompatibility locus of Ustilago maydis. Proc. Natl. Acad. Sci. USA, 90, 664–668.

    Article  PubMed  CAS  Google Scholar 

  • Yee, A.R. and Kronstad, J.W. (1998) Dual sets of chimeric alleles identify specificity sequences for the bE and bW mating and pathogenicity genes of Ustilago maydis. Mol. Cell. Biot, 18, 221–232.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. W. Kronstad

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kahmann, R., Steinberg, G., Basse, C., Feldbrügge, M., Kämper, J. (2000). Ustilago maydis, the Causative Agent of Corn Smut Disease. In: Kronstad, J.W. (eds) Fungal Pathology. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9546-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9546-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5483-8

  • Online ISBN: 978-94-015-9546-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics