Skip to main content

Modelling of carbon-, nitrogen-, and water balances in Scots pine stands

  • Chapter

Part of the book series: Nutrients in Ecosystems ((NECO,volume 3))

Abstract

The aim of the project is to describe the development of pine ecosystems as well as the carbon, nitrogen and water balances at the selected sites as dependent on climate, air pollution and deposition. Because these driving forces develop independently from each other and not homogeneously within the area, measurement results from a limited number of sites cannot easily be transferred to other sites. Thus, a simple statistical approach or the simulation of growth from integrated environmental influences was not adequate to fulfil the tasks of the project. Consequently, a process-based approach has been developed to consider every impact by means of the changes in the basic physiological process involved, and which accounts explicitly for linkages and feedback mechanisms on different time scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Reich PB, Goulden L. 1996. Extrapolating leaf CO2 exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlation. Oecologia. 106, 257–265.

    Article  Google Scholar 

  • Anonymus. 1997. SANA — Wissenschaftliches Begleitprogramm zur Sanierung der Atmosphäre über den neuen Bundesländern, BMBF, Bonn.

    Google Scholar 

  • Bossel H. 1994. TREEDYN3 Forest Simulation Model. Forschungszentrum Waldökosysteme, B/35. Universität Göttingen, Göttingen, 118 pp.

    Google Scholar 

  • Bossel H, Metzler W, Schäfer H. 1985. Dynamik des Waldsterbens. Mathematisches Modell und Computersimulation. Springer Verlag, Berlin Heidelberg.

    Google Scholar 

  • Brumme R, Beese F. 1992. Effects of liming and nitrogen fertilization on emissions of CO2 and N2O from a temperate forest. J Geophys Res, 97, 851–858.

    Article  Google Scholar 

  • Chen CW. 1993. The response of plants to interacting stresses: PGSM Version 1.3 model documentation. EPRI TR-101880. Electric Power Res Inst., Palo Alto, CA.

    Google Scholar 

  • Cropper WPJ, Gholz HL. 1993. Simulation of the carbon dynamics of a Florida slash pine plantation. Ecol Model. 66, 231–249.

    Article  CAS  Google Scholar 

  • De Vries W, Posch M, Kämäri J. 1989. Simulation of the long-term response to acid deposition in various buffer ranges. Water Air Soil Pollut. 48, 349–390.

    Article  Google Scholar 

  • Dougherty PM, Whitehead D, Vose JM. 1994. Environmental influences on the phenoloy of pine. In: Environmental Constraints on the Structure and Productivity of Pine Forest Ecosystems: A Comparative Analysis. Eds. HL Gholz, S Linder, RE McMurtrie. Ecol Bull. Copenhagen, p. 64–75.

    Google Scholar 

  • Eckersten H. 1994. Modelling daily growth and nitrogen turnover for a short-rotation forest over several years. For Ecol Management. 69, 57–72.

    Article  Google Scholar 

  • Eissenstat DM, Van Rees KCJ. 1994. The growth and function of pine roots. Ecol Bull. 43, 76–91.

    CAS  Google Scholar 

  • Franko U. 1990. C- und N-Dynamik beim Umsatz organischer Substanz im Boden. Dissertation B Thesis. Akademie der Landwirtschaftswissenschaften der DDR, Berlin.

    Google Scholar 

  • Gluch W. 1988. Zur Benadelung von Kiefern (Pinus silvestris L.) in Abhängigkeit vom Immissionsdruck. Flora. 181, 395–407.

    Google Scholar 

  • Goudriaan J. 1982. Potential production processes. In: Simulation of Plant Growth and Crop Production. Eds. FWT Penning de Vries, HH van Laar. PUDOC, Wageningen, p. 98–113.

    Google Scholar 

  • Grosch S. 1990. Der atmosphärische Gesamteintrag auf natürlichen Oberflächen unter besonderer Berücksichtigung der trockenen Deposition in Waldgebieten. Berlin Inst Meteorologie und Geophysik Univ Frankfurt. 83, 1–123.

    Google Scholar 

  • Grote R. 1998. Integrating dynamic morphological properties into forest growth modeling II. Allocation and mortality. For Ecol Management. 111, 193–210.

    Article  Google Scholar 

  • Grote R, Suckow F. 1998. Integrating dynamic morphological properties into forest growth modeling I. Effects on water balance and gas exchange. For Ecol Management. 112, 101–119.

    Google Scholar 

  • Hancock NH, Sellers PJ, Crowther JM. 1983. Evaporation from a partially wet canopy. Geophysicae. 1, 139–146.

    Google Scholar 

  • Heij GJ, De Vries W, Posthumus AC, Mohren GMJ. 1991. Effects of air pollution and acid deposition on forests and forest soils. In: Acidification Research in The Netherlands. Final report of the Dutch Priority Programme on Acidification. Studies in Environmental Science. Eds. GJ Heij, T Schneider. Elsevier, Amsterdam, p. 97–137.

    Chapter  Google Scholar 

  • Heinsdorf D. 1967. Untersuchungen über die Wirkung mineralischer Düngung auf das Wachstum und den Ernährungszustand von Kiefernkulturen auf Sandböden im nordostdeutschen Tiefland. IV. Trockensubstanzproduktion, Nährstoffmehraufnahme und Nährstoffspeicherung von Kiefernkulturen nach Düngung. Arch Forstwes. 16(3), 183–201.

    CAS  Google Scholar 

  • Helmisaari H-S, Mälkönen E. 1989. Acidity and nutrient content of throughfall and soil leachate in three Pinus Sylvestris stands. Scand J For Res. 4, 13–28.

    Article  Google Scholar 

  • Hoffmann F. 1995. FAGUS, a model for growth and development of beech. Ecol Model. 83, 327–348.

    Article  CAS  Google Scholar 

  • Kartschall T, Döring P, Suckow, F. 1990. Simulation of nitrogen, water and temperature dynamics in soil. Syst Anal Model Simul. 7(6), 33–40.

    Google Scholar 

  • Kittel TGF, Coughenor MB. 1988. Prediction of regional and local ecological change from global climate model results: a hierachial modelling approach. In: Monitoring Climate for the Effects of Increasing Greenhouse Gas Concentrations. Eds. RA Pilke, TGF Kittel. Fort Collins, Colorado, USA. p. 173–193.

    Google Scholar 

  • Koitzsch R. 1977. Schätzung der Bodenfeuchte aus meteorologischen Daten, Boden- und Pflanzenparametern mit einem Mehrschichtmodell. Z Meteor. 27, 302–306.

    Google Scholar 

  • Liu S. 1997. A new model for the prediction of rainfall interception in forest canopies. Ecol Model. 99, 151–159.

    Article  Google Scholar 

  • Lovett GM, Lindberg SE. 1984. Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. J Appl Ecol. 21, 1012–1027.

    Article  Google Scholar 

  • Luan J, Muetzfeldt RI, Grace J. 1996. Hierarchical approach to forest ecosystem simulation. Ecol Model. 86, 37–50.

    Article  CAS  Google Scholar 

  • McLeod AR, Holland MR, Shaw PJA, Sutherland PM, Darrall NM, Skeffington RA. 1990. Enhancement of nitrogen deposition to forest trees exposed to SO2. Nature. 347(6290), 227–279.

    Article  Google Scholar 

  • Meng FR, Arp PA. 1994. Modelling photosynthetic responses of a spruce canopy to SO2 exposure. For Ecol Management. 67, 69–85.

    Article  Google Scholar 

  • Mohren GMJ. 1987. Simulation of forest growth, applied to Douglas Fir stands in the Netherlands. Agricultural University, Wageningen, The Netherlands. 184 pp.

    Google Scholar 

  • Mohren GMJ, Jorritsma ITM, Vermetten AWM, Kropf, MJ, Smeets WLM, Tiktak A. 1992. Quantifying the direct effects of SO2 and O3 on forest growth. For Ecol Management. 51, 137–150.

    Article  Google Scholar 

  • Monteith JL. 1965. Evaporation and environment. In: The State and Movement of Water in Living Organisms. Symp Soc Exp Biol. Ed. GE Fogg. Academic Press, London, p. 205–234.

    Google Scholar 

  • Penning de Vries FWT, Jansen DM, ten Berge HFM, Bakema A. 1989. Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Simulation Monographs, 29. PUDOC, Wageningen, The Netherlands.

    Google Scholar 

  • Persson H. 1979. Fine root production, mortality and decomposition in forest ecosystems. Vegetation. 41, 101–109.

    Article  Google Scholar 

  • Rodenkirchen H. 1995. Nutrient pools and fluxes of the ground vegetation in coniferous forests due to fertilizing, liming and amelioration. Plant Soil. 168–169, 383–390.

    Article  Google Scholar 

  • Running SW, Gower ST. 1991. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol. 9, 147–160.

    Google Scholar 

  • Santantonio D, Santantonio E. 1987. Seasonal changes in live and dead fine roots during two successive years in thinned plantation of Pinus radiata in New Zealand. NZ J For Sci. 17, 315–328.

    Google Scholar 

  • Schlichter TM, Van der Ploeg RR, Ulrich B. 1983. A simulation model of the water uptake of a beech forest: testing variations in root biomass and distribution. Z. Pflanzenernährung u. Bodenkunde. 146(6), 725–735.

    Article  Google Scholar 

  • Sherif, DW, Mattay JP, McMurtrie RE. 1996. Modeling productivity and transpiration of Pinus radiata climatic effects. Tree Physiol. 16, 183–186.

    Article  Google Scholar 

  • Skeffington RA, Wilson EJ. 1988. Excess nitrogen deposition: Issues for consideration. Environ Pollut. 54, 159–184.

    Article  PubMed  CAS  Google Scholar 

  • Suckow F. 1986. Ein Modell zur Berechnung der Bodentemperatur unter Brache und unter Pflanzenbestand. Dissertation A Thesis, Akademie der Landwirtschaftswissenschaften der DDR, Berlin.

    Google Scholar 

  • Suckow F. 1989. Ein Modell zur Berechnung der Bodentemperatur im Rahmen des Basismodells Boden (BAMO), Tag.-Ber Akad Landwirtsch-Wiss DDR, Berlin, pp. 159–164.

    Google Scholar 

  • Tietema A, Bouten W, Wartenbergh PE. 1991. Nitrous oxide dynamics in an acid forest soil in the Netherlands. For Ecol Management. 44, 53–61.

    Article  Google Scholar 

  • Waring RH, Running SW. 1976. Water uptake, storage and transpiration by conifers: a physiological model. In: Water and Plant Life. Problems and Modern Approaches. Eds. OL Lange, L Kappen, ED Schulze. Berlin — Heidelberg — New York. p. 189–202.

    Chapter  Google Scholar 

  • Wedler M, Geyer R, Heindl B, Hahn S, Tenhunen JD. 1996. Leaf-level gas exchange and scaling-up of forest understory carbon fixation rates with a ‘patch-scale’ canopy model. Theor Appl Climatol. 53, 145–156.

    Article  Google Scholar 

  • Whitehead D, Kelliher FM. 1991. Modeling the water balance of a small Pinus radiata catchment. In: Advancing Toward Closed Models of Forest Ecosystems. Eds. MR Kaufmann, JJ Landsberg. Heron, Victoria, Canada, p. 17–33.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grote, R., Suckow, F., Bellmann, K. (1998). Modelling of carbon-, nitrogen-, and water balances in Scots pine stands. In: Hüttl, R.F., Bellmann, K. (eds) Changes of Atmospheric Chemistry and Effects on Forest Ecosystems. Nutrients in Ecosystems, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9022-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9022-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5224-7

  • Online ISBN: 978-94-015-9022-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics