Skip to main content

Implications of Convective Quasi-Equilibrium for the Large-Scale Flow

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 505))

Abstract

Convective parameterizations attempt to approximate the Reynolds-averaged effects of a convective ensemble on the large-scale flow as a function of the large-scale parameters. The interaction of convective ensemble effects with the large-scale circulation can produce phenomena not found in a non-convecting atmosphere, and the theoretical understanding of this interaction has long been a goal of tropical meteorology. Since convective closures are often complicated to work with in a theoretical model, most such work has been done with very simplified representations of convection. Most commonly, these fix the vertical structure of convective heating, with its magnitude taken proportional to low-level convergence or moisture convergence. These are referred to here as convergence-feedback parameterizations. They are sometimes referred to as “CISK” parameterizations, since they may produce instabilities in the large-scale model flow known as CISK (conditional instability of the second kind). The view of the tropical circulation resulting from such models has had a strong influence upon the field, both for tropical internal variability (Charney and Eliassen 1964; Ooyama 1964; Yamasaki 1969; Hayashi 1970, 1971a,b,c; Lindzen 1974a,b; Chang and Piwowar 1974; Stevens and Lindzen 1978; Davies 1979; Crum and Stevens 1983; Lau and Peng 1987; Hendon 1988; Wang 1988; Sui and Lau 1989; Bladé and Hartmann 1993, Wang and Li 1994) and the response of the tropical atmosphere to sea surface temperature (SST) boundary conditions. In the latter case, most work has been done with very few vertical layers, usually with no moisture equation, and often with semi-empirical linkages of convective heating to SST. Nonetheless these models give useful simulations of anomalous tropical low-level winds (Gill 1980; Webster 1981; Zebiak 1986; Weare 1986; Lindzen and Nigam 1987; Neelin and Held 1987; Kleeman 1991; Wang and Li 1993), and it is of interest to seek justification for why they work, using a model with a more detailed representation of deep convection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Arakawa, A., 1993: Closure assumptions in the cumulus parameterization problem. Chapter 1 in The Representation of Cumulus Convection in Numerical Models of the Atmosphere. (Eds. K. A. Emanuel and D. J. Raymond.) Amer. Meteor. Soc., Meteor. Mon., 24, No. 46, 1–15.

    Google Scholar 

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. R. Met. Soc., 112, 677–691.

    Google Scholar 

  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. R. Met. Soc., 112, 693–709.

    Google Scholar 

  • Betts, A. K., and M. J. Miller, 1993: The Betts-Miller scheme. Chapter 9 in The Representation of Cumulus Convection in Numerical Models of the Atmosphere. (Eds. K. A. Emanuel and D. J. Raymond.) Amer. Meteor. Soc., Meteor. Mon. 24 No. 46, 107–121.

    Google Scholar 

  • Bladé, I. and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 2922–2939.

    Article  Google Scholar 

  • Bretherton, C. S., 1993: The nature of adjustment in cumulus cloud fields. Chapter 5 in The Representation of Cumulus Convection in Numerical Models of the Atmosphere. (Eds. K. A. Emanuel and D. J. Raymond.) Amer. Meteor. Soc., Meteor. Mon., 24, No. 46, 63–74.

    Google Scholar 

  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740–759.

    Article  Google Scholar 

  • Brown, R. G., and C. S. Bretherton, 1997: A test of the strict quasi-equilibrium theory on long space and time scales. J. Atmos. Sci., 54, 624

    Article  Google Scholar 

  • Chang, C. P., and H. Lim, 1988: Kelvin wave-CISK. A possible mechanism for the 30–50 day oscillations. J. Atmos. Sci., 45, 1709–1720.

    Article  Google Scholar 

  • Chang, C. P., and T.M. Piwawar, 1974: Effect of a CISK parameterization on tropical wave growth. J. Atmos. Sci., 31, 1256–1261.

    Article  Google Scholar 

  • Charney, J.G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68–74.

    Article  Google Scholar 

  • Cheng, M.-D., 1989: Effects of downdrafts and mesoscale convective organization on the heat and moisture budgets of tropical cloud clusters. Part II: Effects of convective-scale downdrafts. J. Atmos. Sci., 46, 1540–1564.

    Article  Google Scholar 

  • Crum, F. X., and D. E. Stevens, 1983: A comparison of two cumulus parameterization schemes in a linear model of wave-CISK. J. Atmos. Sci., 40, 2671–2688.

    Article  Google Scholar 

  • Davies, H. C., 1979: Phase-lagged wave-CISK. Quart. J. Roy. Meteor. Soc., 105, 325–353.

    Article  Google Scholar 

  • Emanuel, K. A., 1987: An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 2324–2340.

    Article  Google Scholar 

  • Emanuel, K. A., 1993: The effect of convective response time on WISHE modes. J. Atmos. Sci., 50, 1763–1775.

    Article  Google Scholar 

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

    Google Scholar 

  • Emanuel, K. A., J. D. Neelin and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 1111–1143.

    Article  Google Scholar 

  • Fu, R., A. D. Del Genio, and W. B. Rossow, 1990: Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiances. J. Climate, 3, 1129–1152.

    Article  Google Scholar 

  • Fu, R., A. D. Del Genio, and W. B. Rossow, 1994: Influence of ocean surface conditions on atmospheric vertical thermodynamic structure and deep convection. J. Climate, 7, 1092–1108.

    Article  Google Scholar 

  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Met. Soc., 106, 447–462.

    Article  Google Scholar 

  • Hayashi, Y., 1970: A theory of large-scale equatorial waves generated by condensation heat and accelerating the zonal wind. J. Meteor. Soc. Japan, 48, 140–160.

    Google Scholar 

  • Hayashi, Y., 1971a: Instability of large-scale equatorial waves with a frequency-dependent CISK parameterization. J. Meteor. Soc. Japan, 49, 59–62.

    Google Scholar 

  • Hayashi, Y., 1971b: Instability of large-scale equatorial waves under the radiation condition. J. Meteor. Soc. Japan, 49, 316–319.

    Google Scholar 

  • Hayashi, Y., 1971c: Large-scale equatorial waves destabilized by convective heating in the presence of surface friction. J. Meteor. Soc. Japan, 49, 458–466.

    Google Scholar 

  • Hayashi, Y., and D. G. Golder, 1986: Tropical intraseasonal oscillations appearing in a GFDL general circulation model and FGGE data. Part I: Phase propagation. J. Atmos. Sci., 43, 3058–3067.

    Article  Google Scholar 

  • Hayashi, Y., and S. Miyahara, 1987: A three-dimensional linear response model of the tropical intraseasonal oscillation. J. Meteor. Soc. Japan, 65, 843–852.

    Google Scholar 

  • Hendon, H. H., 1988: A simple model of the 40–50 day oscillation. J. Atmos. Sci., 45, 569–584.

    Article  Google Scholar 

  • Houze, 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396–410.

    Google Scholar 

  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implication for cumulus parameterization. Mon. Wea. Rev., 112, 1590–1601.

    Article  Google Scholar 

  • Jordan, C. L., 1958: Mean sounding for the West Indies area. J. Meteor., 15, 91–97.

    Article  Google Scholar 

  • Kleeman, R. 1991: A simple model of the atmospheric response to ENSO sea surface temperature anomalies. J. Atmos. Sci., 48, 3–18.

    Article  Google Scholar 

  • Lau, K.-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950–972.

    Article  Google Scholar 

  • Lindzen, R., 1974: Wave-CISK in the Tropics. J. Atmos. Sci., 31, 156–179.

    Article  Google Scholar 

  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361–385.

    Article  Google Scholar 

  • Mapes, B. E., and R. A. Houze, Jr., 1997: Diabatic divergence profiles in western Pacific Mesoscale convective systems. J. Atmos. Sci., 52, 1807–1828.

    Article  Google Scholar 

  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 978–1002.

    Article  Google Scholar 

  • Neelin, J. D., and I. M. Held, 1987: Modelling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3–12.

    Article  Google Scholar 

  • Neelin, J. D., I. M. Held and K. H. Cook, 1987: Evaporation-wind feedback and low frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341–2348.

    Article  Google Scholar 

  • Neelin, J. D., and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden-Julian oscillation. Part I: Analytical results. J. Atmos. Sci., 51, 1876–1894.

    Article  Google Scholar 

  • Neelin, J. D., and N. Zeng, 1997: The first quasi-equilibrium tropical circulation model—formulation. In preparation.

    Google Scholar 

  • Numaguti, A., and Y.Y. Hayashi, 1991: Behaviors of the cumulus activity and the structures of the circulations in the “aqua planet” model. Part II: Large scale structures and the evaporation-wind feedback. J. Meteor. Soc. Japan, 69, 563–579.

    Google Scholar 

  • Ooyama, K., 1964: A dynamical model for the study of tropical cyclone development. Geofisica International (Mexico), 4, 187–198.

    Google Scholar 

  • Randall, D.A., and D.-M. Pan, 1993: Implementation of the ArakawaSchubert cumulus parameterization with a prognostic closure. Chapter 11 in The Representation of Cumulus Convection in Numerical Models of the Atmosphere. (Eds. K. A. Emanuel and D. J. Raymond.) Amer. Meteor. Soc., Meteor. Mon., 24, No. 46, 137–144.

    Google Scholar 

  • Randall, D.A., and J. Wang, 1992: The moist available energy of a conditionally unstable atmosphere. J. Atmos. Sci., 49, 240–255.

    Article  Google Scholar 

  • Reed, R. J., E. E. and Recker, 1971: Structure and properties of synoptic-scale waves disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 1117–1133.

    Article  Google Scholar 

  • Seager, R., and S. E. Zebiak, 1994: Convective interaction with dynamics in a linear primitive equation model. J. Atmos. Sci., 51, 1307–1331.

    Article  Google Scholar 

  • Seager, R., and S. E. Zebiak, 1995: Simulation of tropical climate with a linear primitive equation model. J. Clim., 8, 2497–2520.

    Article  Google Scholar 

  • Stevens, D. E., and R. S. Lindzen, 1978: Tropical wave-CISK with a moisture budget and cumulus friction. J. Atmos. Sci., 35, 940–961.

    Article  Google Scholar 

  • Sui, C.-H., and K.-M. Lau, 1989: Origin of low frequency (intraseasonal) oscillations in the tropical atmosphere. Part II: Structure and propagation by mobile wave-CISK modes and their modification by lower boundary forcings. J. Atmos. Sci., 46, 37–56.

    Article  Google Scholar 

  • Thompson, R. M., Jr., S. W. Payne, E E Recker, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36, 53–72.

    Article  Google Scholar 

  • Weare, B. C., 1986: A simple model of the tropical atmosphere with circulation dependent heating and specific humidity. J. Atmos. Sci., 43, 2001–2016.

    Article  Google Scholar 

  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 2051–2065.

    Article  Google Scholar 

  • Wang, B. and Li, T., 1993: A simple tropical atmosphere model of relevance to short-term climate variations. J. Atmos. Sci., 50, 260–284.

    Article  Google Scholar 

  • Wang, B., and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 1386–1400.

    Article  Google Scholar 

  • Webster, P. J., 1981: Mechanisms determining the atmospheric response to sea surface temperature anomalies. J. Atmos. Sci., 38, 554–571.

    Article  Google Scholar 

  • Williams, E. R., and N. Renno, 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121, 21-36.

    Google Scholar 

  • Xu, K.-M., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 1471–1479.

    Article  Google Scholar 

  • Yamasaki, M., 1969: Large-scale disturbances in a conditionally unstable atmosphere in low latitudes. Papers in Meteor. Geophys., 20, 289–336.

    Google Scholar 

  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627.

    Article  Google Scholar 

  • Yanai, M., and R. H. Johnson, 1993: Impacts of cumulus convection on thermodynamic fields. Chapter 4 in The Representation of Cumulus Convection in Numerical Models of the Atmosphere. (Eds. K. A. Emanuel and D. J. Raymond.) Amer. Meteor. Soc., Meteor. Mon., 24, No. 46, 39–62.

    Google Scholar 

  • Yano, J.-I., and K. Emanuel, 1991: An improved model of the equatorial troposphere and its coupling with the stratosphere. J. Atmos. Sci., 48, 377–389.

    Article  Google Scholar 

  • Yu, J.-Y., and Neelin, J. D., 1994: Modes of tropical variability under convective adjustment and the Madden-Julian oscillation. Part II: Numerical results. J. Atmos. Sci., 51, 1895–1914.

    Article  Google Scholar 

  • Yu, J.-Y., and J. D. Neelin, 1997: Analytic approximations for moist convectively adjusted regions. J. Climate, 54, 1054–1063.

    Google Scholar 

  • Yu, J.-Y., C. Chou and J. D. Neelin, 1997: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci.,in press.

    Google Scholar 

  • Zebiak, S. E., 1986: Atmospheric convergence feedback in a simple model for El Nino. Mon. Wea. Rev., 114, 1263–1271.

    Article  Google Scholar 

  • Zeng, N., J. D. Neelin, and C. Chou, 1997: The first quasi-equilibrium tropical circulation model-simulation. In preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Neelin, J.D. (1997). Implications of Convective Quasi-Equilibrium for the Large-Scale Flow. In: Smith, R.K. (eds) The Physics and Parameterization of Moist Atmospheric Convection. NATO ASI Series, vol 505. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8828-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8828-7_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4960-5

  • Online ISBN: 978-94-015-8828-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics