Skip to main content

River-Sediment Inputs to Major Deltas

  • Chapter

Part of the book series: Coastal Systems and Continental Margins ((CSCM,volume 2))

Abstract

River sediments are distributed unevenly in space and time, and they are markedly susceptible to human influences. Half the world’s river sediment is derived from the Himalayan region and its environs. Most of the remainder is derived from other tectonically active regions such as the western Pacific islands, the Andes, and southern Alaska. River-sediment loads are variable at many time scales: seasonal, annual, decadal, and longer. The storage of sediment in river systems confounds our ability to predict the delivery of sediment to coastal zones. Natural river-sediment loads are increased by deforestation and crop farming, and decreased by dams and reservoirs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas, N. and Subramanian, V., 1984. Erosion and sediment transport in the Ganges River basin (India). Jour. Hydrol., 69, 173–182.

    Article  Google Scholar 

  • Adler, L. L., 1980. Adjustment of the Yuba River, California, to the Influx of Hydraulic Mining Debris, 1849–1979. University of California, Los Angeles, M. A. thesis, 180 pages.

    Google Scholar 

  • Avellan Vegas, F., Porras Gonzalez, P., Rivero Pantoja, G. and Chacon Mendoza, F., 1969. Inventario Nacional de Aguas Superficiales (Venezuela) Comision del Plan Nacional de Aprovechamiento de los Recursos Hidraulicos; v. 1, 127 pages; v. 2, 14 plates.

    Google Scholar 

  • Awosika, L.F., Meade, R.H., Milliman, J.D., Wells, J.T. and Windom, H.L., 1994 ). Anthropogenic influences on sediment discharge to the coastal zone and environmental consequences. United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Rep. and Studies, 51, 67 pages.

    Google Scholar 

  • Biksham, G. and Subramanian, V., 1988. Sediment transport of the Godavari River basin and its controlling factors. Jour. Hydrol., 101, 275–290.

    Article  Google Scholar 

  • Bobrovitskaya, N.N., 1994. Assessment of trends to sediment discharge variations in the rivers of the Former Soviet Union (FSU), in Proceedings, International Symposium, East-West, North-South Encounter on the State-of-the-art in River Engineering Methods and Design Philosophies. State Hydrological Institute, St. Petersburg, 2, 32–39.

    Google Scholar 

  • Bornhold, B.D., Yang, Z.-s., Keller, G.H., Prior, D.B., Wiseman, W.J., Jr., Wang, Q., Wright, L.D., Xu, W.-d. and Zhuang, Z.-y., 1986. Sedimentary framework of the modern Huanghe (Yellow River) Delta. Geo-Marine Letters, 6, 77–83.

    Article  Google Scholar 

  • Brown, W. M., III and Ritter, J. R., 1971. Sediment transport and turbidity in the Eel River basin, California. U. S. Geol. Surv. Water-Supply Paper 1986, 70 pp.

    Google Scholar 

  • Brune, G. M., 1953. Trap efficiency of reservoirs. Am. Geophys. Union Trans., 34, 407–418.

    Article  Google Scholar 

  • Burrows, R. L. and Harrold, P. E., 1983. Sediment transport in the Tanana River near Fairbanks, Alaska. U. S. Geol. Surv. Water-Res. Invest. Rep. 83–4064, 116 pp.

    Google Scholar 

  • Cooke, R. U. and Reeves, R. W., 1976. Arroyos and Environmental Change in the American South-West Clarendon Press, Oxford: 213 pages.

    Google Scholar 

  • Coleman, J. M. (1969). Brahmaputra River: channel processes and sedimentation. Sed. Geol. 3, 131–239.

    Google Scholar 

  • Curtis, W. F., Culbertson, J. K. and Chase, E. B., 1973. Fluvial-sediment discharge to the oceans from the conterminous United States. U.S. Geol. Surv. Circ. 670, 17 pp.

    Google Scholar 

  • Ding, L.-y., 1989. Improvement of the mouth of the Yellow River and sediment disposal. In: Brush, L.M., Wolman, M.G. and Huang, B.-W.(eds.), Taming the Yellow River: Silt and Floods. Kluwer Academic Publishers, Dordrecht, 637–655.

    Google Scholar 

  • Douglas, I., 1967. Man, vegetation, and the sediment yields of rivers. Nature, 215, 925–928.

    Article  Google Scholar 

  • Drago, E. E. and Amsler, M. L., 1988. Suspended sediment at a cross section of the Middle Parana River: concentration, granulometry and influence of the main tributaries. In: Bordas, M. P. and Walling, D.E. (eds.), Sediment Budgets. Internat. Assoc. Hydrol. Sci. Pub., 174, 381–396.

    Google Scholar 

  • El Dardir, M., 1994. Sedimentation in Nile High Dam Reservoir, 1987–1992, and sedimentary futurologic aspects. Sedimentology of Egypt, 2, 23–39.

    Google Scholar 

  • Eisma, D., Augustinus, P.G.E.F. and Alexander, C., 1991. Recent and subrecent changes in the dispersal of Amazon mud. Netherlands Jour. Sea Res., 28, 181–192.

    Article  Google Scholar 

  • Emmett, W. W., 1981. Measurement of bed load in rivers, in Erosion and Sediment Trans-port Measurement. Internat. Assoc. Hydrol. Sci. Pub. 133, 3–15.

    Google Scholar 

  • Everett, D. E., 1971. Hydrologic and quality characteristics of the lower Mississippi River. Louisiana Dept. Public Works Tech. Rep. 5, 48 pp.

    Google Scholar 

  • Gibbs, R. J., 1967. The geochemistry of the Amazon River system: Part I. The factors that control the salinity and the composition and concentration of the suspended solids. Geol. Soc. America Bull., 78, 1203–1232.

    Article  Google Scholar 

  • Gilbert, G. K., 1917. Hydraulic-mining debris in the Sierra Nevada. U. S. Geol. Surv. Prof. Paper 105, 154 pp.

    Google Scholar 

  • Goswami, D. C., 1985. Brahmaputra River, Assam, India: physiography, basin denudation, and channel aggradation. Water Resources Res, 21, 959–978.

    Article  Google Scholar 

  • Grant, P. J., 1985. Major periods of erosion and alluvial sedimentation in New Zealand during the Late Holocene. Royal Soc. New Zealand Jour., 15, 67–121.

    Article  Google Scholar 

  • Gregory, K. J. and Walling, D. E., 1973. Drainage Basin Form and Process. John Wiley und Sons, New York: 456 pp.

    Google Scholar 

  • Hadley, R. F., 1974. Sediment yield and land use in southwest United States. In: Effects of Man on the Interface of the Hydrological Cycle with the Physical Environment. Internat. Assoc. Hydrol. Sci. Pub. 113: 96–98.

    Google Scholar 

  • Hay, B.J., 1994. Sediment and water discharge rates of Turkish Black Sea rivers before and after hydropower dam construction. Environm. GeoL, 23, 276–283.

    Google Scholar 

  • Hereford, R., 1984 ) Climate and ephemeral-stream processes: twentieth-century geomorphology and alluvial stratigraphy of the Little Colorado River, Arizona. Geol. Soc. America Bull. 95: 654–668.

    Article  Google Scholar 

  • Holeman, J. N., 1981. The national erosion inventory of the Soil Conservation Service, U. S. Department of Agriculture, 1977–79, in Erosion and sediment transport measurement. Internat. Assoc. Hydrol. Sci. Pub. 133, 315–319.

    Google Scholar 

  • James, L. A., 1989. Sustained storage and transport of hydraulic gold mining sediment in the Bear River, California. Assoc. Am. Geogr. Annals 79, 570–592.

    Article  Google Scholar 

  • Jansson, M. B., 1982. Land erosion by water in different climates. Uppsala Univ. Naturgeografiska Inst. Rapp., 57, 151 pp.

    Google Scholar 

  • Jordan, P. R., 1965. Fluvial sediment of the Mississippi River at St. Louis, Missouri. U. S. Geol. Survey Water-Supply Paper 1802: 89 pp.

    Google Scholar 

  • Judson, S., 1963. Erosion and deposition of Italian stream valleys during historic time. Science, 140, 898–899.

    Article  Google Scholar 

  • Judson, S., 1968. Erosion of the land, or what’s happening to our continents ? Am. Scientist, 56, 356–374.

    Google Scholar 

  • Kelley, R. L., 1959. Gold vs. Grain - The Hydraulic Mining Controversy in California’s Sacramento Valley. Arthur H. Clark, Glendale, California: 327 pp.

    Google Scholar 

  • Keown, M. P., Dardeau, E. A., Jr. and Causey, E. M., 1986. Historic trends in the sediment flow regime of the Mississippi River. Water Resources Res, 22, 1555–1564.

    Article  Google Scholar 

  • Kuehl, S.A., DeMaster, D.J. and Nittrouer, C.A., 1986. Nature of sediment accumulation on the Amazon continental shelf. Continental Shelf Res, 6, 209–225.

    Article  Google Scholar 

  • Kuehl, S.A., Hariu, T.M., and Moore, W.S., 1989. Shelf Sedimentation off the Ganges-Brahmaputra river system: evidence for sediment bypassing to the Bengal fan. Geology, 17, 1132–1135

    Article  Google Scholar 

  • Leopold, L. B. and Miller, J. P., 1954. A postglacial chronology for some alluvial valleys in Wyoming. U. S. Geol. Surv. Water-Supply Paper1261, 90 pages.

    Google Scholar 

  • Leopold, L. B., Wolman, M. G. and Miller, J. P., 1964. Fluvial Processes in Geomorphology. W. H. Freeman und Co., San Francisco: 522 pp.

    Google Scholar 

  • Long, Y q. and Xiong, G.-s., 1981. Sediment measurement in the Yellow River, in Erosion and sediment transport measurement. Internat. Assoc. Hydrol. Sci. Pub. 133, 275–285.

    Google Scholar 

  • Madden, E. B., 1965. Channel design for modified sediment regime conditions on the Arkansas River, in Proceedings, Federal Inter-Agency Sedimentation Conference, 1963. U. S. Dept. Agr. Misc. Pub. 970, 335–352.

    Google Scholar 

  • Meade, R. H., 1969. Errors in using modern stream-load data to estimate natural rates of denudation. Geol. Soc. America Bull., 80, 1265–1274.

    Article  Google Scholar 

  • Meade, R. H., 1982. Sources, sinks, and storage of river sediment in the Atlantic drainage of the United States. Jour. Geol., 90, 235–252.

    Article  Google Scholar 

  • Meade, R. H., 1985. Suspended sediment in the Amazon River and its tributaries in Brazil during 1982–84. U. S. Geol. Surv. Open-File Rep. 85–492, 39 pp.

    Google Scholar 

  • Meade, R.H., 1994. Suspended sediments of the modern Amazon and Orinoco Rivers. Quaternary Internat, 21, 29–39.

    Article  Google Scholar 

  • Meade, R. H., Nordin, C. F., Jr., Pérez Hernandez, D., Mejia B., A. and Pérez Godoy, J. M., 1983. Sediment and water discharge in Rio Orinoco, Venezuela and Colombia, in Proceedings, Second International Symposium on River Sedimentation, Nanjing. Water Resources and Electric Power Press, Beijing: 1134–1144.

    Google Scholar 

  • Meade, R. H., Dunne, T., Richey, J. E., Santos, U. de M. and Salati, E., 1985. Storage and remobilization of suspended sediment in the lower Amazon River of Brazil. Science, 228, 488–490.

    Article  Google Scholar 

  • Meade, R. H. and Parker, R. S., 1985. Sediment in rivers of the United States. In: National Water Summary 1984. U. S. Geol. Surv. Water-Supply Paper 2275, 49–60.

    Google Scholar 

  • Meade, R. H. and Trimble, S. W., 1974. Changes in sediment loads in rivers of the Atlantic drainage of the United States since 1900. In: Effects of Man on the Interface of the Hydrological Cycle with the Physical Environment. Internat. Assoc. Hydrol. Sci. Pub. 113, 99–104.

    Google Scholar 

  • Meade, R. H., Yuzyk, T. R. and Day, T. J., 1990a. Movement and storage of sediment in rivers of the United States and Canada. In: Wolman, M. G. Colorado, The Geology of North America, O-1.

    Google Scholar 

  • Meade, R. H., Weibezahn, F. H., Lewis, W. M., Jr. and Pérez Hernandez, D., 1990b. Suspended-sediment budget for the Orinoco River, in Weibezahn, F H., Alvarez, H. and Lewis, W. M., Jr. (eds.),The Orinoco River as an Ecosystem. Impresos Rubel, Caracas: 55–79.

    Google Scholar 

  • Mertes, L. A. K., 1985. Floodplain Development and Sediment Transport in: The Solimoes-Amazon River, Brazil. University of Washington, Seattle, M. S. thesis, 108 pages.

    Google Scholar 

  • Milliman, J. D. and Meade, R. H., 1983. World-wide delivery of river sediment to the oceans. Jour. Geol., 91, 1–21.

    Article  Google Scholar 

  • Milliman, J. D., Quraishee, G. S. and Beg, M. A. A., 1984. Sediment discharge from the Indus River to the ocean: past, present and future, in Hag, B. U., and Milliman, J. D. (eds.), Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan. Van Nostrand Reinhold Co., New York: 65–70.

    Google Scholar 

  • Milliman, J. D., Qin, Y.-s., Ren, M.-e. and Saito, Y., 1987. Man’s influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example. Jour. Geol., 95, 751–762.

    Article  Google Scholar 

  • Milliman, J.D. and Syvitski, J.P.M., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Jour. Geol., 100, 525–544.

    Article  Google Scholar 

  • Nordin, C. F. and Meade, R. H., 1982. Deforestation and increased flooding of the upper Amazon. Science, 215, 426–427.

    Article  Google Scholar 

  • Peters, J. J., 1978. Discharge and sand transport in the braided zone of the Zaire estuary. Netherlands Jour. Sea Res., 12, 273–292.

    Article  Google Scholar 

  • Petschinov, D., 1968. Schwebstoffe der Donau (Unterlauf), in Limnologische Berichte der X. Jubilaumstagung der Arbeitsgemeinschaft Donauforschung, Bulgarien 10–20 Oktober 1966. Verlag der Bulgarischen Akademie der Wissenschaften, Sofia: 69–81.

    Google Scholar 

  • Qian, N., Zhang, R. and Chen, Z.-c., 1987. On some sedimentation problems of the Three Gorges Project. Internat. Jour. Sed. Res. (Beijing), 1, 5–38.

    Google Scholar 

  • Richey, J.E., Nobre, C. and Deser, C., 1989. Amazon River discharge and climate variability: 1903 to 1985. Science, 246, 101–103.

    Article  Google Scholar 

  • Schumm, S. A., 1977. The Fluvial System. John Wiley und Sons, New York: 338 pages.

    Google Scholar 

  • Shahin, M.,1985. Hydrology of the Nile Basin. Elsevier, Amsterdam, 575 p.

    Google Scholar 

  • Shi, Y.-L., Yang, W. and Ren, M.-e., 1985. Hydrological characteristics of the Changjiang and its relation to sediment transport to the sea. Continent. Shelf Res., 4, 5–15.

    Article  Google Scholar 

  • Shiklomanov, I.A., and Skakalsky, B.C., 1994. Studying water, sediment and contaminant runoff of Siberian rivers: Modern status and prospects, in Workshop on Arctic Contamination, May 2–7, 1993, Anchorage, Alaska Arctic Research of the United States, 8, 295–306.

    Google Scholar 

  • Smith, B. J., 1965. Sedimentation in the San Francisco Bay system, in Proceedings, Federal Inter-Agency Sedimentation Conference, 1963. U. S. Dept. Agr. Misc. Pub. 970, 675708.

    Google Scholar 

  • Stanley, D.J. and Warne, A.C., 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science, 265, 228–231.

    Article  Google Scholar 

  • Sternberg, H. 0., 1987. Aggravation of floods in the Amazon River as a consequence of deforestation? Geogr. Ann., 69A, 201–219.

    Google Scholar 

  • Tang, R.-c. and Lin, W.-q., 1987. A study on sedimentation problems of the Gezhouba Project. Internat. Jour. Sed. Research (Beijing), 1, 69–101.

    Google Scholar 

  • Trimble, S. W., 1977. The fallacy of stream equilibrium in contemporary denudation studies. Am. Jour. Sci., 277, 876–887.

    Article  Google Scholar 

  • Trimble, S. W., 1983. A sediment budget for Coon Creek basin in the Driftless Area, Wisconsin, 1853–1977. Am. Jour. Sci., 283, 454–474.

    Article  Google Scholar 

  • Varga, S., Bruk, S. and Babic-Mladenovic, M., 1989. Sedimentation in the Danube and tributaries upstream from the Iron Gates (Djerdap) Dam, in Proceedings, Fourth In-ternational Symposium on River Sedimentation, Beijing. China Ocean Press, Beijing: 1111–1118.

    Google Scholar 

  • Walling, D. E., 1983. The sediment delivery problem, in Rodriguez-Iturbe, I. and Gupta, V. K. (eds.), Scale problems in hydrology. Jour. Hydrol., 65, 209–237.

    Google Scholar 

  • Walling, D. E. and Webb, B. W., 1983. Patterns of sediment yield, in Gregory, K. J. (ed.), Background to Palaeohydrology. John Wiley und Sons, New York: 69–100.

    Google Scholar 

  • Wells, F. C., 1980. Hydrology and water quality of the lower Mississippi River. Louisiana Office Public Works Tech. Rep. 21, 83 pages, 5 plates.

    Google Scholar 

  • Yang, Z.-s., Milliman, J. D. and Fitzgerald, M. G., 1983. Transfer of water and sediment from the Yangtze River to the East China Sea, June 1980. Can. Jour. Fisheries Aquat. Sci., 40 (supp. 1), 72–82.

    Article  Google Scholar 

  • Zhang, P. and Liu, Z.-s., 1989. Trend of sediment load over the years in the upper region of the Three-Gorges in the Yangtze River, in Proceedings, Fourth International Symposium on River Sedimentation, Beijing. China Ocean Press, Beijing: 286–293.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meade, R.H. (1996). River-Sediment Inputs to Major Deltas. In: Milliman, J.D., Haq, B.U. (eds) Sea-Level Rise and Coastal Subsidence. Coastal Systems and Continental Margins, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8719-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8719-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4672-7

  • Online ISBN: 978-94-015-8719-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics