Skip to main content

The basal ganglia

  • Chapter
  • 893 Accesses

Abstract

At one time, the term, ‘basal ganglia’ was used to describe all the large nuclear masses in the interior of the brain, including the thalamus. Gradually, its use has become restricted to five closely related nuclei: caudate, putamen, globus pallidus, subthalamic nucleus and substantia nigra (Figure 11.1). The basal ganglia receive no direct sensory inputs and, like the cerebellum, send no direct motor output to the spinal cord. However, there is no doubt that these structures are involved in the control of movement. All diseases of the basal ganglia in man have some disorder of movement as their primary symptom. These range from an excess of involuntary movements (for instance, chorea) to a poverty and slowness of voluntary movement (for instance, Parkinson’s disease). Important as their role may be, there is to date no agreement on the precise function or the mechanism of action of the basal ganglia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Review articles and books

  • Crossman, A. R. and Sambrook, M. A. (1989) Neural mechanisms in disorders of movement, John Libbey, London.

    Google Scholar 

  • Ciba Foundation (1984) Functions of the basal ganglia, Ciba Foundation Symposium, 107, Pitman, London.

    Google Scholar 

  • Marsden, C. D. (1982) The mysterious motor function of the basal ganglia, Neurology, 32, 514–539.

    PubMed  CAS  Google Scholar 

  • Trends in Neuroscience (1990), volume 13, no. 10. Special edition on the basal ganglia.

    Google Scholar 

Original papers

  • Albin, R. L., Young, A. B. and Penney, J. B. (1989) The functional anatomy of basal ganglia disorders, Trends Neurosci., 12, 366–375.

    Article  PubMed  CAS  Google Scholar 

  • Albin, R. L., Reiner, A., Anderson, K. D. et al. (1992) Preferential loss of striato-external pallidal projection neurones in presymptomatic Huntington’s disease, Ann. Neurol., 31, 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, G. E., DeLong, M. R. and Strick, P. L. (1986) Parallel organisation of functionally segregated circuits linking basal ganglia and cortex, Annu. Rev. Neurosci., 9, 357–381.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, G. E. and Crutcher, M. D. (1990a) Functional architecture of basal ganglia circuits: neural substrates of parallel processing, Trends Neurosci., 13, 266–271.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, G. E. and Crutcher, M. D. (1990b) Preparation for movement: neural representations of intended direction in three motor areas of the monkey, J. Neurophysiol., 64, 133–150; 150-163; 164-178.

    PubMed  CAS  Google Scholar 

  • Anderson, M. E. and Horak, F. B. (1985) Influence of the globus pallidus on arm movement in monkeys, Parts 1, 2, and 3, J. Neurophysiol., 52, 290–304; 305-322; 54, 433-448.

    Google Scholar 

  • Anderson, M. E. and Turner, R. S. (1991) A quantitative analysis of pallidal discharge during targeted reaching movement in the monkey, Exp. Brain Res., 86, 623–632.

    Article  PubMed  CAS  Google Scholar 

  • Benecke, R., Rothwell, J. C., Dick, J. P. R. et al. (1986) Performance of simultaneous movements in patients with Parkinson’s disease, Brain 109, 739–757.

    Article  PubMed  Google Scholar 

  • Benecke, R., Rothwell, J. C, Dick, J. P. R. et al. (1987) Disturbance of sequential movements in patients with Parkinson’s disease, Brain, 110, 361–379.

    Article  PubMed  Google Scholar 

  • Bergman, H., Wichmann, T. and DeLong, M. R. (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus, Science, 249, 1436–1438.

    Article  PubMed  CAS  Google Scholar 

  • Brotchie, P., Ianseck, R. and Home, M. K. (1991) Motor function of the monkey globus pallidus, Papers 1 and 2, Brain, 114, 1667–1702.

    Article  PubMed  Google Scholar 

  • Carpenter, M. B. (1981) Anatomy of the corpus striatum and brainstem integrating systems, in V. B. Brooks (ed.), Handbook of Physiology, sect. 1, vol. 2, part 2, Williams and Wilkins, Baltimore, pp. 947–995.

    Google Scholar 

  • Chevalier, G. and Deniau, J. M. (1990) Disinhibition as a basic process in the expression of striatal function, Trends Neurosci. 13, 277–280.

    Article  PubMed  CAS  Google Scholar 

  • Crutcher, M. D. and DeLong, M. R. (1984) Single cell studies of the primate putamen, Parts 1 and 2, Exp. Brain Res., 53, 233–258.

    Article  PubMed  CAS  Google Scholar 

  • Day, B. L., Dick, J. P. R. and Marsden, C. D. (1984) Patients with Parkinson’s disease can employ a predictive motor strategy, J. Neurol. Neurosurg. Psychiatr., 47, 1299–1306.

    Article  PubMed  CAS  Google Scholar 

  • DeLong, M. R. and Georgopoulos, A. P. (1979) Motor function of basal ganglia as revealed by studies of single cell activity in the behaving primate, Adv. Neurol., 24, 131–140.

    Google Scholar 

  • DeLong, M. R. and Georgopoulos, A. P. (1981) Motor functions of the basal ganglia, in V. B. Brooks (ed.), Handbook of Physiology, sect. 1, vol. 2, part 2, Williams and Wilkins, Baltimore, pp. 1017–1061.

    Google Scholar 

  • DeLong, M. R., Crutcher, M. D. and Georgopoulos, A. P. (1985) Primate globus pallidus and subthalamic nucleus: functional organisation, J. Neurophysiol., 53, 530–543.

    PubMed  CAS  Google Scholar 

  • Dick, J. P. R., Rothwell, J. C, Day, B. L. et al. (1989) The Bereitschaftspotential is abnormal in Parkinson’s disease, Brain, 112, 233–244.

    Article  PubMed  Google Scholar 

  • Evarts, E. V., Teravainen, N. H. and Calne, D. B. (1981) Reaction time in Parkinson’s disease, Brain, 104, 167–186.

    Article  PubMed  CAS  Google Scholar 

  • Filion, M. and Tremblay, L. (1991) Abnormal spontaneous activity of globus pallidus neurones in monkeys with MPTP induced parkinsonism, Brain Res., 547, 142–151; 152-161.

    PubMed  CAS  Google Scholar 

  • Flowers, K. A. (1976) Visual ‘closed loop’ and ‘open loop’ characteristics of voluntary movement in patients with parkinsonism and intention tremor, Brain, 99, 269–310.

    Article  PubMed  CAS  Google Scholar 

  • Flowers, K. A. (1978) Lack of prediction in the motor behaviour of parkinsonism, Brain, 101, 35–52.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A. M. (1990) Neurotransmitters and neuromodulators in the basal ganglia, Trends Neurosci., 13, 244–253.

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka, O. and Wurtz, R. H. (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata, parts 1–4, J. Neurophysiol., 49, 1232–1301.

    Google Scholar 

  • Hore, J. and Vilis, T. (1980) Arm movement performance during reversible basal ganglia lesions in the monkey, Exp. Brain Res., 39, 217–228.

    Article  PubMed  CAS  Google Scholar 

  • Lamarre, Y. and Joffroy, A. J. (1979) Experimental tremor in monkey: activity of thalamic and precentral cortical neurones in the absence of peripheral feedback, Adv. Neurol., 24, 109–122.

    Google Scholar 

  • Lindvall, O., Widner, H., Rehncrona, S. et al. (1992) Transplantation of foetal dopamine neurons in Parkinson’s disease: one year clinical and neurophysiological observations in two patients with putaminal implants, Ann. Neurol., 31, 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Marsden, C. D. (1984) Origins of normal and pathological tremor, in L. J. Findley and R. Capildeo (eds), Movement Disorders: Tremor, Macmillan, London, pp. 37–84.

    Google Scholar 

  • Marsden, C. D. (1990) Neurophysiology, in G. Stern (ed.) Parkinson’s Disease, Chapman & Hall, London, pp. 57–98.

    Google Scholar 

  • Martin, J. P. (1967) The Basal Ganglia and Posture, Lippincott, Philadelphia.

    Google Scholar 

  • Meara, R. J. and Cody, F. W. J. (1992) Relationship between electromyographic activity and clinically assessed rigidity studied at the wrist joint in Parkinson’s disease, Brain, 115, 1167–1180.

    Article  PubMed  Google Scholar 

  • Mink, J. W. and Thach, W. T. (1991) Basal ganglia motor control, Parts 1, 2, and 3, J. Neurophysiol., 65, 273–351.

    PubMed  CAS  Google Scholar 

  • Pechadre, J. C, Larochelle, L. and Poirier, L. J. (1976) Parkinsonian akinesia, rigidity and tremor in the monkey, J. Neurol Sci., 28, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Romo, R. and Schultz, W. (1990) Dopamine neurones of the monkey midbrain: contigences of responses to active touch to self-initiated arm movement, J. Neurophysiol, 63, 592–606; 607-624.

    PubMed  CAS  Google Scholar 

  • Rothwell, J. C., Obeso, J. A., Day, B. L. et al. (1983a) Pathophysiology of dystonias, Adv. Neurol, 39, 851–863.

    PubMed  CAS  Google Scholar 

  • Rothwell, J. C, Obeso, J. A., Traub, M. M. et al. (1983b) The behaviour of the long-latency stretch reflex in patients with Parkinson’s disease, J. Neurol. Neurosurg. Psychiatr., 46, 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, R. S., Chafetz, M. E. and Walker, S. (1954) Control of two simultaneous motor acts in normals and in parkinsonism, Arch. Neurol Psychiatr., 72, 591–598.

    CAS  Google Scholar 

  • Smith, A. D. and Bolam, J. P. (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones, Trends Neurosci., 13, 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, P. D., Berardelli, A., Rothwell, J. C. et al. (1988) The coexistence of bradykinesia and chorea in Huntington’s disease and its implications for theories of basal ganglia control of movement, Brain, 111, 223–244.

    Article  PubMed  Google Scholar 

  • Traub, M. M., Rothwell, J. C. and Marsden, C. D. (1980) Anticipatory postural reflexes in Parkinson’s disease and other akinetic-rigid syndromes and in cerebellar ataxia, Brain, 103, 393–412.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay, L., Filion, M. and Bedard, P. J. (1989) Responses of pallidal neurones to striatal stimulation in monkeys with MPTP induced parkinsonism, Brain Res., 498, 17–33.

    Article  PubMed  CAS  Google Scholar 

  • Williams, P. L. and Warwick, R. (1975) Functional Neuro-anatomy of Man, Churchill Livingstone, Edinburgh.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 John Rothwell

About this chapter

Cite this chapter

Rothwell, J. (1994). The basal ganglia. In: Control of Human Voluntary Movement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6960-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6960-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-47700-3

  • Online ISBN: 978-94-011-6960-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics