Skip to main content

A Note on Derived Linear Recurring Sequences*

  • Chapter
  • 459 Accesses

Abstract

A linear recurring sequence u 0, u 1 u 2, …} of kth order over Q, the field of rational numbers, is defined by the recurrence

$$ {{u}_{{n + k}}} = \sum\limits_{{i = 1}}^{k} {{{{( - 1)}}^{{i - 1}}}{{\sigma }_{i}}{{u}_{{n + k - i}}}{{\sigma }_{i}} \in \mathbb{Q}} $$
(1)

The sequence u n can be nicely characterized, [2, Vol. I, p. 410], by determinants that define derived sequences.

This research was partially supported by CNR

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burnside, W.S. and Panton, A.W. The Theory of Equations. Volume I and II. New York: Dover, 1960.

    Google Scholar 

  2. Dickson, L.E. History of the Theory of Numbers. New York: Dover, 1971.

    Google Scholar 

  3. Dodd, F.W. Number Theory in the Quadratic Field with Golden Section Unit. Passaic: Polygonal Publ. House, 1983.

    MATH  Google Scholar 

  4. Gauss, C.F. Disquisitiones Arithmeticae. New York: Springer-Verlag, 1986.

    MATH  Google Scholar 

  5. Hirschhorn, M.D. “An Amazing Identity of Ramanujan.” Mathematics Magazine, Vol. 68.3 (1995): pp. 199–201.

    Article  MathSciNet  Google Scholar 

  6. Lucas, E. Théorie de Nombres. Paris: Blanchard, 1961.

    Google Scholar 

  7. Lucas, E. Recherches sur l’Analyse Indéterminée et l’Arithmetique de Diophante. Paris: lanchard, 1961.

    MATH  Google Scholar 

  8. Vajda, S. Fibonacci & Lucas Numbers, and the Golden Section. Chichester (UK): Ellis Horwood, 1989.

    MATH  Google Scholar 

  9. Venkov, B.A. Elementary Number Theory. Groningen: Wolters-Noordhoff, 1970.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Elia, M. (1998). A Note on Derived Linear Recurring Sequences*. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5020-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5020-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6107-0

  • Online ISBN: 978-94-011-5020-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics