Skip to main content

Part of the book series: Developments in environmental biology of fishes ((DEBF,volume 12))

Abstract

The interrelationships of 31 actinistian species (including Latimeria chalumnae) are analyzed based on a cladistic analysis of 75 osteological characters. Inference of evolutionary trends (e.g., modification of body shape and skull morphology) from the phylogenetic patterns demonstrates that the morphology of actinistians is less conservative than has been proposed previously. This empirical cladistic approach supports two distinct tempos of evolution during an evolutionary history of 380 million years. Along a phylogenetic pathway originating with a Devonian stem-species and ending with the living Latimeria chalumnae (including 101 morphological changes and 18 cladogenetic events), the first tempo occurred during the Devonian — Permian periods as a decreasing rate of morphological changes, which was followed by a stabilizing tempo during the Permian — Recent periods. The decreasing tempo is characterized by a sequence of gradual versus quantum temporal changes and low versus faster rates, whereas the stabilizing tempo primarily is gradual and low. In contrast to a common assumption, no significant correlation was found between the rates of morphological evolution and the temporal diversity of species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  • Andrews, S.M. 1973. Interrelationships of crossopterygians. pp. 138–177. In: P.H. Greenwood, R.S. Miles & C. Patterson (ed.) Interrelationships of Fishes, Zool. J. Linn. Soc. Lond. 53, Suppl. 1.

    Google Scholar 

  • Andrews, S.M., B.G. Gardiner, R.S. Miles & C. Patterson. 1967. Pisces. pp. 637–683. In: W.B. Harland, C.H. Holland, M.R. House, N.F. Hughes, et al. (ed.) The Fossil Record: A Symposium with Documentation, Geol. Soc. Lond.

    Google Scholar 

  • Balon, E.K. 1991. Probable evolution of the coelacanth’s reproductive style: lecithotrophy and orally feeding embryos in cichlid fishes and in Latimeria chalumnae. Env. Biol. Fish. 32: 249–265. (this volume)

    Article  Google Scholar 

  • Balon, E.K., M.N. Bruton & H. Fricke. 1988. A fiftieth anniversary reflection on the living coelacanth, Latimeria chalumnae: some new interpretation of its natural history and conservation status. Env. Biol. Fish. 23: 241–280.

    Article  Google Scholar 

  • Bemis, W.E. & T.E. Hetherington. 1982. The rostal [sic] organ of Latimeria chalumnae: morphological evidence of an electroreceptive function. Copeia 1982: 467–471.

    Article  Google Scholar 

  • Bjerring, H.C. 1973. Relationships of coelacanthiforms. pp. 179–205. In: P.H. Greenwood, R.S. Miles & C. Patterson (ed.) Interrelationships of Fishes, Zool. J. Linn. Soc. Lond. 53, Suppl. 1.

    Google Scholar 

  • Chang, M.-M. 1982. The braincase of Youngolepis, a Lower Devonian crossopterygian from Yunnan, South-Western China. Dept. of Geology, Univ. of Stockholm, Stockholm. 113 pp.

    Google Scholar 

  • Cloutier, R. 1990. Interrelationships of Palaeozoic actinistians: patterns and trends. In: M.M. Chang, G. Zhang & Y. Liu (ed.) Proceedings of the Fifth Symposium on Early Vertebrate Studies and Related Problems in Evolutionary Biology, Beijing, People’s Republic of China, Oceanography Publ. House, Beijing. (In press).

    Google Scholar 

  • Cloutier, R. & P.L. Forey. 1991. Diversity of extinct and living actinistian fishes (Sarcopterygii). Env. Biol. Fish. 32: 59–74. (this volume)

    Article  Google Scholar 

  • Cracraft, J. 1981. Pattern and process in paleobiology: the role of cladistic analysis in systematic paleontology. Paleobiology 7: 456–468.

    Google Scholar 

  • Dagnelie, P. 1977. Théorie et méthodes statistiques. Applications agronomiques. Vol. 1, 2nd ed. Presses Agronomiques de Gembloux, Gembloux. 378 pp.

    Google Scholar 

  • DeCarvalho, M.S.S. 1982. O genero Mawsonia na ictiofaunula do Cretaceo do Estado da Bahia. An. Acad. Bras. Cien. 54: 519–539.

    Google Scholar 

  • Derstler, K. 1982. Estimating the rate of morphological change in fossil groups. pp. 131–136. In: B. Mamet & M.J. Copeland (ed.) Proc. Third North Amer. Paleontol. Convent., Vol. 1.

    Google Scholar 

  • Dixon, W.J. & F.J. Massey. 1983. Introduction to statistical analysis. 4th ed. McGraw-Hill, New York. 678 pp.

    Google Scholar 

  • Eastman, C.R. 1908. Devonian fishes of Iowa. Iowa Geol. Surv. Annual Report (1907) 18: 29–386.

    Google Scholar 

  • Echols, J. 1963. A new genus of Pennsylvanian fish (Cross-opterygii, Coelacanthiformes) from Kansas. Univ. Kans. Mus. Nat. Hist. Publ. 12: 475–501.

    Google Scholar 

  • Eldredge, N. 1984. Simpson’s inverse: bradytely and the phenomenon of living fossils. pp. 272–277. In: N. Etheridge & S.M. Stanley (ed.) Living Fossils, Springer, New York.

    Chapter  Google Scholar 

  • Eldredge, N. & S.J. Gould. 1972. Punctuated equilibia: an alternative to phyletic gradualism. pp. 82–115. In: T.J.M. Schopf (ed.) Models in Paleobiology, Freeman, Cooper & Co., San Francisco.

    Google Scholar 

  • Elliott, D.K. 1987. A new specimen of Chinlea sorenseni from the Chinle Formation, Dolores River, Colorado. J. Arizona-Nevada Acad. Sci. 22: 47–52.

    Google Scholar 

  • Forey, P.L. 1980. Latimeria: a paradoxical fish. Proc. R. Soc. Lond. 208B: 369–384.

    Article  Google Scholar 

  • Forey, P.L. 1981. The coelacanth Rhabdoderma in the Carboniferous of the British Isles. Palaeontology 24: 203–229.

    Google Scholar 

  • Forey, P.L. 1984. The coelacanth as a living fossil. pp. 166–169. In: N. Etheridge & S.M. Stanley (ed.) Living Fossils, Springer, New York.

    Chapter  Google Scholar 

  • Forey, P.L. 1987. Relationships of lungfishes. pp. 75–91. In: W.E. Bemis, W.W. Burggren & N.E. Kemp (ed.) The Biology and Evolution of Lungfishes, J. Morphol. Suppl. 1.

    Google Scholar 

  • Forey, P.L. 1988. Golden jubilee for the coelacanth Latimeria chalumnae. Nature 336(6201): 727–732.

    Article  Google Scholar 

  • Forey, P.L. 1991. Latimeria chalumnae and its pedigree. Env. Biol. Fish. 32: 75–97. (this volume)

    Article  Google Scholar 

  • Fricke, H., O. Reinicke, H. Hofer & W. Nachtigall. 1987. Locomotion of the coelacanth Latimeria chalumnae in its natural environment. Nature 329(6137): 331–333.

    Article  Google Scholar 

  • Gauthier, J., A.G. Kluge & T. Rowe. 1988. Amniote phylogeny and the importance of fossils. Cladistics 4: 105–210.

    Article  Google Scholar 

  • Gould, S.J. & N. Eldredge. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3: 115–151.

    Google Scholar 

  • Hennig, W. 1966. Phylogenetic systematics. University of Illinois Press, Urbana. 263 pp.

    Google Scholar 

  • Hensel, K. 1986. Morphologie et interprétation des canaux et canalicules sensoriels céphaliques de Latimeria chalumnae Smith, 1939 (Osteichthyes, Crossopterygii, Coelacanthiformes). Bull. Mus. Natl. Hist. Nat. Paris, 4e sér. 8: 379–407.

    Google Scholar 

  • Hill, C.R. & J.M. Camus. 1986a. Evolutionary cladistics of marattialean ferns. Bull. Br. Mus. nat. Hist. (Bot.) 14: 219–300.

    Google Scholar 

  • Hill, C.R. & J.M. Camus. 1986b. Pattern cladistics or evolutionary cladistics? Cladistics 2: 362–375.

    Article  Google Scholar 

  • Jarvik, E. 1963. The composition of the intermandibular division of the head in fish and tetrapods and the diphyletic origin of the tetrapod tongue. K. Sven. VetenskapsAkad. Handl. 9: 1–74.

    Google Scholar 

  • Jarvik, E. 1964. Specializations in early vertebrates. Ann. Soc. R. Zool. Belg. 94: 11–95.

    Google Scholar 

  • Jarvik, E. 1980. Basic structure and evolution of vertebrates, Vol. 1 and 2. Academic Press, New York. 575 and 337 pp.

    Google Scholar 

  • Lauder, G.V. 1980. On the evolution of the jaw adductor musculature in primitive gnathostome fishes. Breviora 460: 1–10.

    Google Scholar 

  • Lazarus, D.B. & D.R. Prothero. 1984. The role of stratigraphie and morphologic data in phylogeny. J. Paleontol. 58: 163–172.

    Google Scholar 

  • Lund, R. & W.L. Lund. 1985. Coelacanths from the Bear Gulch Limestone (Namurian) of Montana and the evolution of the Coelacanthiformes. Bull. Carnegie Mus. Nat. Hist. 25: 1–74.

    Google Scholar 

  • Lund, W.L., R. Lund & G.A. Klein. 1985. Coelacanth feeding mechanisms and ecology of the Bear Gulch coelacanths. C.R. Neuv. Cong. Internatl. Stratigr. Géol. Carbonifère 5: 492–500.

    Google Scholar 

  • Lundberg, J.G. & E. Marsh. 1976. Evolution and functional anatomy of the pectoral fin rays in cyprinoid fishes, with emphasis on the suckers (family Catostomidae). Amer. Midl. Nat. 96: 332–349.

    Article  Google Scholar 

  • Maddison, W.P., M.J. Donoghue & D.R. Maddison. 1984. Outgroup analysis and parsimony. Syst. Zool. 33: 83–103.

    Article  Google Scholar 

  • Maisey, J.G. 1986. Coelacanths from the Lower Cretaceous of Brazil. Amer. Mus. Novit. 2866: 1–30.

    Google Scholar 

  • Martin, M. & S. Wenz. 1984. Découverte d’un nouveau Coelacanthidé, Garnbergia ommata n.g., n.sp., dans le Muschel-kalk supérieur du Baden-Württemberg. Stuttg. Beitr. Naturkd., Ser. B, 105: 1–17.

    Google Scholar 

  • McAllister, D.E. 1968. The evolution of branchiostegals and associated opercular, gular, and hyoid bones and the classification of teleostome fishes, living and fossil. Bull. Can. Nat. Mus. 221: 1–239.

    Google Scholar 

  • Menning, M. 1989. A synopsis of numerical time scales 1917-1986. Episodes 12: 3–5.

    Google Scholar 

  • Millot, J. & J. Anthony. 1954. Tubes rostraux et tubes nasaux de Latimeria (Coelacanthidae). C.R. Séances Acad. Sci. 239: 1241–1243.

    Google Scholar 

  • Millot, J. & J. Anthony. 1956. L’organe rostral de Latimeria (crossoptérygien coelacanthidé). Ann. Sci. nat. Zool. 18: 381–389.

    Google Scholar 

  • Millot, J. & J. Anthony. 1958. Anatomie de Latimeria chalumnae 1. Squelette, muscles et formations de soutien. C.N.R.S., Paris. 122 pp.

    Google Scholar 

  • Millot, J. & J. Anthony. 1965. Anatomie de Latimeria chalumnae 2. C.N.R.S., Paris. 130 pp.

    Google Scholar 

  • Moy-Thomas, J.A. 1939. Palaeozoic fishes. Chemical Publishing Co. Inc., New York. 149 pp.

    Google Scholar 

  • Moy-Thomas, J.A. & R.S. Miles. 1971. Palaeozoic fishes, 2nd ed. W.B. Saunders Company, Philadelphia. 259 pp.

    Book  Google Scholar 

  • Moy-Thomas, J.A. & T.S. Westoll. 1935. On the Permian coelacanth, Coelacanthus granulatus Ag. Geol. Mag. 72: 446–457.

    Article  Google Scholar 

  • Northcutt, R.G. 1989. The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. pp. 17–78. In: S. Coombs, P. Gorner & H. Munz (ed.) The Mechanosensory Lateral Line: Neurobiology and Evolution, Springer Verlag, New York.

    Chapter  Google Scholar 

  • ørvig, T. 1986. A vertebrate bone from the Swedish Paleocene. Geol. Fören. Stockholm Förhandl. 108: 139–141.

    Article  Google Scholar 

  • Palmer, A.R. 1983. The decade of North American geology. 1983. Geologic time scale. Geology 11: 503–504.

    Article  Google Scholar 

  • Panchen, A.L. & T.R. Smithson. 1987. Character diagnosis, fossils and the origin of tetrapods. Biol. Rev. 62: 341–438.

    Article  Google Scholar 

  • Paul, C.R.C. 1982. The adequacy of the fossil record. pp. 75–117. In: K.A. Joysey & A.E. Friday (ed.) Problems of Phylogenetic Reconstruction, Academic Press, London.

    Google Scholar 

  • Raup, D.M. 1987. Major features of the fossil record and their implications for evolutionary rate studies. pp. 1–14. In: K.S.W. Campbell & M.F. Day (ed.) Rates of Evolution, Allen & Enwin, London.

    Google Scholar 

  • Rieppel, O. 1980. A new coelacanth from the Middle Triassic of Monte San Giorgio, Switzerland. Eclogae Geol. Helv. 73: 921–939.

    Google Scholar 

  • Robineau, D. 1987. Sur la signification phylogénétique de quelques caractères anatomiques remarquables du coelacanthe Latimeria chalumnae Smith, 1939. Ann. Sci. natl., Zool., Paris, ser. 13, 8: 43–60.

    Google Scholar 

  • Schaeffer, B. 1941. A revision of Coelacanthus newarki and notes on the evolution of the girdles and basal plates of the median fins in the Coelacanthini. Amer. Mus. Novit. 1110: 1–17.

    Google Scholar 

  • Schaeffer, B. 1948. A study of Diplurus longicaudatus with notes on the body form and locomotion of the Coelacanthini. Amer. Mus. Novit. 1378: 1–32.

    Google Scholar 

  • Schaeffer, B. 1952a. The Triassic coelacanth fish Diplurus, with observations on the evolution of the Coelacanthini. Bull. Amer. Mus. Nat. Hist. 99(2): 25–78.

    Google Scholar 

  • Schaeffer, B. 1952b. Rates of evolution in the coelacanth and dipnoan fishes. Evolution 6: 101–111.

    Article  Google Scholar 

  • Schaeffer, B. 1953. Latimeria and the history of coelacanth fishes. Trans. N.Y. Acad. Sci., ser. 2, 15: 170–178.

    Article  Google Scholar 

  • Schaeffer, B. 1967. Late Triassic fishes from the western United States. Bull. Amer. Mus. Nat. Hist. 135(6): 285–342.

    Google Scholar 

  • Schaeffer, B. & J.T. Gregory. 1961. Coelacanth fishes from the continental Triassic of the western United States. Amer. Mus. Novit. 2036: 1–18.

    Google Scholar 

  • Schoch, R.M. 1986. Phylogeny reconstruction in paleontology. Van Nostrand Reinhold, New York. 353 pp.

    Google Scholar 

  • Schultze, H.-P. 1973. Crossopterygier mit heterozerker Schwanzflosse aus dem Oberdevon Kanadas, nebst einer Beschreibung von Onychodontida-Resten aus dem Mitteldevon Spaniens und aus dem Karbon der USA. Palaeontographica (A) 143: 188–208.

    Google Scholar 

  • Schultze, H.-P. 1987. Dipnoans as sarcopterygians. pp. 39–74. In: W.E. Bemis, W.W. Burggren & N.E. Kemp (ed.) The Biology and Evolution of Lungfishes, J. Morphol. Suppl. 1.

    Google Scholar 

  • Simpson, G.G. 1944. Tempo and mode in evolution. Columbia University Press, New York. 237 pp.

    Google Scholar 

  • Simpson, G.G. 1949. Rates of evolution in animals. pp. 205–228. In: G.L. Jepsen, E. Mayr & G.G. Simpson (ed.) Genetics, Paleontology and Evolution, Princeton University Press, Princeton.

    Google Scholar 

  • Snedecor, G.W. & W.G. Cochran. 1980. Statistical methods, 7th ed. Iowa State University Press, Ames. 507 pp.

    Google Scholar 

  • Stanley, S.M. 1975. A theory of evolution above the species level. Proc. Nat. Acad. Sci. USA 72: 646–650.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, S.M. 1984. Does bradytely exist? pp. 278–280. In: N. Etheridge & S.M. Stanley (ed.) Living Fossils, Springer, New York.

    Chapter  Google Scholar 

  • Stanley, S.M. 1985. Rates of evolution Paleobiology 11: 13–26.

    Google Scholar 

  • Stensiö, E.A. 1921. Triassic fishes from Spitzbergen, Pt. 1. Holzhausen, Vienna. 307 pp.

    Google Scholar 

  • Stensiö, E.A. 1932. Triassic fishes from East Greenland. Medd. Groenl. 83(3): 1–305.

    Google Scholar 

  • Stensiö, E.A. 1947. The sensory lines and dermal bones of the cheek in fishes and amphibians. K. Sven. VetenskapsAkad. Handl. 3(24): 1–195.

    Google Scholar 

  • Swofford, D.L. 1985. PAUP: Phylogenetic analysis using parsimony. User’s manual. Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Trueb, L. & R. Cloutier. 1990. A phylogenetic investigation of the inter-and intrarelationships of the Lissamphibia (Amphibia: Temnospondyli). In: H.-P. Schultze & L. Trueb (ed.) Origins of Major Groups of Tetrapods: Controversies and Consensus, Cornell University Press, Ithaca (in press).

    Google Scholar 

  • Vrba, E.S. 1980. Evolution, species and fossils: how does life evolve? S. Afr. J. Sci. 76: 61–84.

    Google Scholar 

  • Wang, N. & H. Liu. 1981. Coelacanth fishes from the marine Permian of Zhejiang, South China. Vertebr. PalAsia. 19(4): 305–312. (In Chinese).

    Google Scholar 

  • Watrous, L.E. & Q.D. Wheeler. 1981. The out-group comparison method of character analysis. Syst. Zool. 30: 1–11.

    Article  Google Scholar 

  • Wenz, S. 1975. Un nouveau coelacanthidé du Crétacé inférieur du Niger, remarques sur la fusion des os dermiques. Colloq. Int. C.N.R.S. 218: 175–190.

    Google Scholar 

  • Westoll, T.S. 1937. On the cheek-bones in teleostome fishes. J. Anat. 71: 362–382.

    PubMed  CAS  Google Scholar 

  • Westoll, T.S. 1949. On the evolution of the Dipnoi. pp. 121–184. In: G.L. Jepsen, E. Mayr & G.G. Simpson (ed.) Genetics, Paleontology and Evolution, Princeton University Press, Princeton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John A. Musick Michael N. Bruton Eugene K. Balon

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cloutier, R. (1991). Patterns, trends, and rates of evolution within the Actinistia. In: Musick, J.A., Bruton, M.N., Balon, E.K. (eds) The biology of Latimeria chalumnae and evolution of coelacanths. Developments in environmental biology of fishes, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3194-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3194-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1289-5

  • Online ISBN: 978-94-011-3194-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics