Skip to main content

The xanthophyll cycle

  • Chapter
Carotenoids in Photosynthesis

Abstract

Among all the carotenoids which are present in the photosynthetic membranes of higher plants, only three undergo rapid, light-induced changes in their concentration. These are the three xanthophylls of the xanthophyll cycle and they undergo intercon versions induced by changes in light intensity. Furthermore, the acclimation of photosynthetic organs to high light involves a strong increase in the total sum of these three xanthophylls. Both the interconversions among the components of the xanthophyll cycle and the increase of the size of the total xanthophyll cycle pool occur in response to light stress. Plants are subjected to light stress in the field in high light habitats, as well as in habitats where they encounter other environmental stress factors in combination with light. The characteristics of the xanthophyll cycle are discussed here in relation to its specific association with high light stress and its recently described function in a photoprotective process of fundamental importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, W.W. IE (1988) Photosynthetic acclimation and photoinhibition of terrestrial and epiphytic CAM tissues growing in full sunlight and deep shade. Aust. J. Plant Physiol., 15:123–134.

    Article  CAS  Google Scholar 

  • Adams, W.W. III and Demmig-Adams, B. (1992) Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta ,186:390–398.

    Article  CAS  Google Scholar 

  • Adams, W.W. III, Smith, S.D. and Osmond, C.B. (1987) Photoinhibition of the CAM succulent Opuntia basilaris growing in Death Valley: Evidence from 77K fluorescence and quantum yield. Oecologia ,71:221–228.

    Article  Google Scholar 

  • Adams, W.W. HI, Terashima, I., Brugnoli, E. and Demmig, B. (1988) Comparisons of photosynthesis and photoinhibition in the CAM vine Hoya australis and several C3 vines growing on the coast of eastern Australia. Plant Cell Environ. ,11:173–181.

    Article  CAS  Google Scholar 

  • Adams, W.W. III, Díaz, M. and Winter, K. (1989) Diurnal changes in photochemical efficiency, the reduction state of Q, radiationless energy dissipation, and non-photochemical fluorescence quenching in cacti exposed to natural sunlight in northern Venezuela. Oecologia ,80:553–561.

    Article  Google Scholar 

  • Adams, W.W. HI, Demmig-Adams, B. and Winter, K. (1990) Relative contributions of zeaxanthin-related and zeaxanthin-unrelated types of “high-energy-state” quenching of chlorophyll fluorescence in spinach leaves exposed to various environmental conditions. Plant Physiol. ,92:302–309.

    Article  PubMed  CAS  Google Scholar 

  • Adams, W.W. HI, Volk, M., Hoehn, A. and Demmig-Adams, B. (1992) Leaf orientation and the response of the xanthophyll cycle to incident light. Oecologia ,90:404–410.

    Article  Google Scholar 

  • Aihara, M.S. and Yamamoto, H.Y. (1968) Occurrence of antheraxanthinintwoRhodophyceae Acanthophora spicifera and Gracilaria lichenoides. Phytochemistry ,7:497–499.

    Article  CAS  Google Scholar 

  • Anderson, J.M. (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Annu. Rev. Plant Physiol. ,37: 93–136.

    Article  CAS  Google Scholar 

  • Anderson, J.W., Foyer, C.H. and Walker, D.A. (1983) Light-dependent reduction of dehydroascorbate and uptake of exogenous ascorbate by spinach chloroplasts. Planta, 158:442–450.

    Article  CAS  Google Scholar 

  • Aristarkov, A.I., Nikandrov, V.V. and Krasnovskii, A.A. (1987) Ascorbate permeability of chloroplast thylakoid membrane: Reduction of plastoquinones and cytochrome f. [Translated from Biokhimiya ,52:2051–2060] Biochemistry ,52:1776–1784.

    Google Scholar 

  • Asada, K. and Takahashi, M. (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle, D.J., Osmond, C.B. and Arntzen, C.J. (eds.), Photoinhibition. Elsevier, Amsterdam, pp. 227–284.

    Google Scholar 

  • Beck, A., Burkert, A. and Hofmann, M. (1983) Uptake of L-ascorbate by intact spinach chloroplasts. Plant Physiol. ,73:41–45.

    Article  PubMed  CAS  Google Scholar 

  • Beddard, G.S., Davidson, R.S. and Tretheway, K.R. (1977) Quenching of chlorophyll fluorescence by ß-carotene. Nature ,267: 373–374.

    Article  CAS  Google Scholar 

  • Bilger, W. and Björkman, O. (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. ,25:173–185.

    Article  CAS  Google Scholar 

  • Bilger, W. and Björkman, O. (1991) Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malvapannflora L. Planta ,184:226–234.

    Article  CAS  Google Scholar 

  • Bilger, W., Björkman, O. and Thayer, S.S. (1989) Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. Plant Physiol. ,91:542–551.

    Article  PubMed  CAS  Google Scholar 

  • Björkman, O. (1981) Responses to different quantum flux densities. In: Lange, O.L., Nobel, P.S., Osmond, C.B. and Ziegler, H. (eds.), Physiological Plant Ecology I. Encyclopedia of Plant Physiology, Vol. 12A. Springer, Berlin, pp. 57–107.

    Chapter  Google Scholar 

  • Björkman, O. and Demmig, B. (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta, 170:489–504.

    Article  Google Scholar 

  • Björkman, O. and Schäfer, C. (1989) A gas exchange-fluorescence analysis of photosynthetic performance of a cotton crop under high-irradiance stress. (Extended abstract.) Phil. Trans. R. Soc. Lond. B ,323:309–311.

    Article  Google Scholar 

  • Björkman, O., Demmig, B. and Andrews, T.J. (1988) Mangrove photosynthesis: Response to high-irradiance stress. Aust. J. Plant Physiol. 15:43–61.

    Article  Google Scholar 

  • Bjørnland, T. and Aguilar-Martinez, M. (1976) Carotenoids in red algae. Phytochemistry, 15:291–296.

    Article  Google Scholar 

  • Blass, U., Anderson, J.M. and Calvin, M. (1959) Biosynthesis and possible relations among the carotenoids and between chlorophyll a and b. Plant Physiol. ,34:329–333.

    Article  PubMed  CAS  Google Scholar 

  • Braumann, T.H. and Grimme, L.H. (1981) Reversed-phase high performance liquid chromatography of chlorophylls and carotenoids. Biochim. Biophys. Acta ,637:8–17.

    Article  CAS  Google Scholar 

  • Brown, L.M. and McLachlan, J. (1982) Atypical carotenoids for the Rhodophyceae in the genus Gracilaria (Gigartinales). Phycologia ,21:9–16.

    Article  CAS  Google Scholar 

  • Costes, C., Burghoffer, C., Joyard, J. et al. (1979) Occurrence and biosynthesis of violaxanthin in isolated spinach chloroplast envelope. FEBS Lett. ,103:17–21.

    Article  CAS  Google Scholar 

  • Demmig, B. and Bjòrkman, O. (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta ,171:171–184.

    Article  CAS  Google Scholar 

  • Demmig, B. and Winter, K. (1988) Characterisation of three components of non-photochemical fluorescence quenching and their response to photoinhibition. Aust. J. Plant Physiol., 15:163–177.

    Article  Google Scholar 

  • Demmig, B., Winter, K., Krüger, A. and Czygan, F.-C. (1987) Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol. ,84:218–224.

    Article  PubMed  CAS  Google Scholar 

  • Demmig, B., Winter, K., Krüger, A. and Czygan, F.-C. (1988) Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiol. ,87:17–24.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B. (1990) Carotenoids and photoprotection in plants. A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta ,1020:1–24.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B. and Adams, W.W. III (1992a) Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell Environ. ,15:411–419.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B. and Adams, W.W. III (1992b) Light, photosynthesis, and the xanthophyll cycle. In: Pell, E.J. and Steffen, K.L. (eds.), Active Oxygen/Oxidative Stress and Plant Metabolism. American Society of Plant Physiologists, Rockville, pp. 171–179.

    Google Scholar 

  • Demmig-Adams, B., Adams, W.W. III, Winter, K. et al. (1989a) Photochemical efficiency of photosystemll, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the “midday depression” of net CO2 uptake in Arbutus unedo growing in Portugal. Planta ,177:377–387.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Winter, K., Krüger, A. and Czygan, F.-C. (1989b) Light stress and photoprotection related to the carotenoid zeaxanthin in higher plants. In: Briggs, W.R. (ed.) Photosynthesis. Alan R. Liss, New York, pp. 375–391.

    Google Scholar 

  • Demmig-Adams, B., Winter, K., Krüger, A. and Czygan, F.-C. (1989c) Light response of CO2 assimilation, dissipation of excess excitation energy, and zeaxanthin content of sun and shade leaves. Plant Physiol. ,90:881–886.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B., Winter, K., Krüger, A. and Czygan, F.-C. (1989d) Zeaxanthin and the induction and relaxation kinetics of the dissipation of excess excitation energy in leaves in 2% O2, 0% CO2. Plant Physiol. ,90:887–893.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B., Winter, K., Krüger, A. and Czygan, F.-C. (1989e) Zeaxanthin synthesis, energy dissipation, and photoprotection of photosystem II at chilling temperatures. Plant Physiol ,90:894–898.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams,B., Winter, K., Winkelmann,E. et al. (1989f)Photosynthetic characteristics and the ratios of chlorophyll, ß-carotene, and the components of the xanthophyll cycle upon a sudden increase in growth light regime in several plant species. Bot. Acta, 102:319–325.

    CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W. III, Czygan, F.-C. et al. (1990a) Differences in the capacity for radiationless energy dissipation in green and blue-green algal lichens associated with differences in carotenoid composition. Planta ,180:582–589.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W. HI, Green, T.G.A. et al. (1990b) Differences in the susceptibility to light stress in two lichens forming a phycosymbiodeme, one partner possessing and one lacking the xanthophyll cycle. Oecologia ,84:451–456.

    Google Scholar 

  • Demmig-Adams, B., Adams, W.W. III, Heber, U. et al. (1990c) Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. Plant Physiol. ,92:293–301.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B., Máguas, C., Adams, W.W. III, et al. (1990d) Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta ,180:400–409.

    Article  CAS  Google Scholar 

  • Duckham, S.C., Linforth, R.S.T and Taylor, LB. (1991) Abscisic-acid-deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant Cell Environ. ,14: 601–606.

    Article  CAS  Google Scholar 

  • Dujardyn, M. and Foyer, C.H. (1989) Limitation of CO2 assimilation and regulation of Benson-Calvin cycle activity in barley leaves in response to changes in irradiance, photoinhibition, and recovery. Plant Physiol ,91:1562–1568.

    Article  PubMed  CAS  Google Scholar 

  • Ferrar, P.J. and Osmond, C.B. (1986) Nitrogen supply as a factor influencing photoinhibition and photosynthetic acclimation after transfer of shade-grown Solanum dulcamara to bright light. Planta ,168: 563–570.

    Article  CAS  Google Scholar 

  • Foyer, C.H., Lelandais, M., Edwards, E.A. and Mullineaux, P.M. (1992) The role of ascorbate in plants: Interactions with photosynthesis and regulatory significance. In: Pell, E.J. and Steffen, K.L. (eds.), Active Oxygen/Oxidative Stress and Plant Metabolism. American Society of Plant Physiologists, Rockville, pp. 131–144.

    Google Scholar 

  • Franklin, L.A., Levavasseur, G., Osmond, C.B. et al. (1992) Two components of onset and recovery during photoinhibition of Ulva rotundata. Planta ,186:399–408.

    Article  CAS  Google Scholar 

  • Gamon, J.A., Field, C.B., Bilger, W. et al. (1990) Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia ,85:1–7.

    Article  Google Scholar 

  • Gilmore, A.M. and Yamamoto, H.Y. (1990)Zeaxanthin formation in qE-inhibited chloroplasts. In: Baltscheffsky, M. (ed.) Current Research in Photosynthesis ,Vol. 2. Kluwer Academic Publishers, Dordrecht, pp. 495–498.

    Google Scholar 

  • Gilmore, A.M. and Yamamoto, H.Y. (1991a) Zeaxanthin-dependent and independent nonphotochemical quenching are quantitatively related to ΔpH. Plant Physiol. Suppl., 96:41.

    Google Scholar 

  • Gilmore, A.M. and Yamamoto, H.Y. (1991b) Zeaxanthin-dependent and independent nonphotochemical quenching are resistant to antimycin in proportion to ΔpH. Plant Physiol. Suppl., 96:119.

    Google Scholar 

  • Gilmore, A.M. and Yamamoto, H.Y. (1991c) Resolution of lutein and zeaxanthin using a nonendcapped, lightly carbon-loaded C-18 high-performance liquid chromatographic column. J. Chromatogr. ,543:137–145.

    Article  CAS  Google Scholar 

  • Gilmore, A.M. and Yamamoto, H.Y. (1991d) Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially-mediated linear and cyclic electron transport. Plant Physiol. ,96:635–643.

    Article  PubMed  CAS  Google Scholar 

  • Greer, D.H., Berry, J. A. and Björkman, O. (1986) Photoinhibition of photosynthesis in intact bean leaves: Role of light, temperature and requirement for chloroplast-protein synthesis during recovery. Planta ,168:253–260.

    CAS  Google Scholar 

  • Hager, A. (1967) Untersuchungen über die Rückreaktionen im Xanthophyll-Cyclus bei Chlorella, Spinacia und Taxus. Planta ,76:138–148. Hager, A. (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatischen Violaxanthin → Zeaxanthin-Umwandlung; Beziehungen zur Photophosphorylierung. Planta, 89:224–243.

    Article  Google Scholar 

  • Hager, A. (1980) The reversible, light-induced conversions of xanthophylls in the chloroplast. In: Czygan, F.-C. (ed.) Pigments in Plants. Fischer, Stuttgart, pp. 57–79.

    Google Scholar 

  • Hager, A. and Meyer-Bertenrath, T. (1966) Die Isolierung und quantitative Bestimmung der Carotinoide und Chlorophylle von Blättern, Algen und isolierten Chloroplasten mit Hilfe dünnschichtchromatographischer Methoden. Planta ,69:198–217.

    Article  CAS  Google Scholar 

  • Hager, A. and Perz, H. (1970) Veränderung der Lichtabsorption eines Carotinoids im Enzym(De-Epoxidase)-Substrat(Violaxanthin)-Komplex. Planta ,93:314–322.

    Article  CAS  Google Scholar 

  • Hager, A. and Stransky, H. (1970) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-Cyclus in verschiedenen Algenklassen. V. Einzelne Vertreter der Cryptophyceae, Euglenophyceae, Bacillariophyceae, Chrysophyceae und Phaeophyceae. Arch. Microbiol. ,73:77–89.

    CAS  Google Scholar 

  • Harbinson, J., Genty, B. and Foyer, C.H. (1990) Relationship between photosynthetic electron transport and stromal enzyme activity in pea leaves. Plant Physiol. ,94:545–553.

    Article  PubMed  CAS  Google Scholar 

  • Henley, W.J., Levavasseur, G., Franklin, L.A. et al. (1991) Photoacclimation and photoinhibition in Viva rotundata as influenced by nitrogen availability. Planta, 184:235–243.

    Article  CAS  Google Scholar 

  • Horton, P. (1990) Regulation of light harvesting by metabolic events. In: Baltscheffsky, M. (ed.) Current Research in Photosynthesis ,Vol. IV. Kluwer Academic Publishers, Dordrecht, pp. 111–118.

    Google Scholar 

  • Horton, P., Ruban, A.V., Rees, D. et al. (1991) Control of the light-harvesting function of chloroplast membranes by the proton concentration in the thylakoid lumen: aggregation states of the LHCII complex and the role of zeaxanthin. FEBS. Lett. ,1059:355–360.

    Google Scholar 

  • Jones, B.L. and Porter, J.W. (1986) Biosynthesis of carotenes in higher plants. Crit. Rev. Plant Sci. ,3:295–324.

    Article  CAS  Google Scholar 

  • Khamis, S., Lamaze, T., Lemoine, Y. and Foyer, C. (1990) Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation. Plant Physiol., 94:1436–1443.

    Article  PubMed  CAS  Google Scholar 

  • Kitajima, M. and Butler, W.L. (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim. Biophys. Acta, 376:105–115.

    Article  PubMed  CAS  Google Scholar 

  • Krause, G.H. (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol. Plant. ,74:566–574.

    Article  CAS  Google Scholar 

  • Krause, G.H. and Behrend, U. (1986) ΔpH-dependent chlorophyll fluorescence quenching indicating a mechanism of protection against photoinhibition of chloroplasts. FEBS Lett. ,200:298–302.

    Article  CAS  Google Scholar 

  • Krause, G.H.,Vernotte,C. and Briantais,J.-M.(l982) Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components. Biochim. Biophys. Acta ,679:116–124.

    Article  Google Scholar 

  • Krinsky, N.I. and Welankiwar, S. (1984) Assay of carotenoids. Meth. Enzymol. ,105:155– 162.

    Article  PubMed  CAS  Google Scholar 

  • Lemoine, Y., Zabulon, G. and Cornu, A. (1987) Chlorophyll-protein complexes; changes associated with chloroplast development in a virescent Petunia hybrida mutant. In: Biggins, J. (ed.) Progress in Photosynthesis Research ,Vol. II. Martinus Nijhoff, Dordrecht, pp. 371–374.

    Chapter  Google Scholar 

  • Liaaen-Jensen, S. (1978) Algal carotenoids and chemosystematics. In: Faulkner, D.J. and Fenical, W.H. (eds.), Marine Natural Products Chemistry. Plenum, New York, pp. 239– 259.

    Google Scholar 

  • Lichtenthaler, H.K. and Meier, D. (1984) Regulation of chloroplast photomorphogenesis by light intensity and light quality. In: Ellis, R.J. (ed.) Chloroplast Biogenesis. Cambridge University Press, Cambridge, pp. 261–281.

    Google Scholar 

  • Lichtenthaler, H.K., Burgstahler, R., Buschmann, C. et al. (1982) Effect of high light and high light stress on composition, function and structure of the photosynthetic apparatus. In: Marcelle, R. (ed.) Stress Effects on Photosynthesis. Dr W. Junk, The Hague, pp. 353– 370.

    Google Scholar 

  • Liddell, P.A., Nemeth, G.A., Lehman, W.R. et al. (1982) Mimicry of carotenoid function in photosynthesis: Synthesis and photophysical properties of a carotenopyropheophorbide. Photochem. Photobiol. ,36: 641–645.

    Article  CAS  Google Scholar 

  • Mantoura, R.F.C. and Llewellyn, C.A. (1983) Rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal. Chim. Acta ,151:297–314.

    Article  CAS  Google Scholar 

  • Neubauer, C. and Yamamoto, H.Y. (1991) The Mehler-peroxidase reaction generates the ApH that is required for zeaxanthin-related fluorescence quenching. Plant Physiol. Suppl., 96:119.

    Google Scholar 

  • Noctor, G., Rees, D. and Horton, P. (1989) Uncoupler titrations of energy-dependent quenching of chlorophyll fluorescence in chloroplasts. In: Baltscheffsky, M. (ed.) Current Research in Photosynthesis ,Vol. 1. Kluwer Academic Publishers, Dordrecht, pp. 627–630.

    Google Scholar 

  • Noctor, G., Rees, D., Young, A. and Horton, P. (1991) The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence, and trans-thylakoid pH gradient in isolated chloroplasts. Biochim. Biophys. Acta ,1057:320–330.

    Article  CAS  Google Scholar 

  • Oxborough, K. and Horton, P. (1987) Characterization of the effects of antimycin A upon high energy state quenching of chlorophyll fluorescence (qE) in spinach and pea chloroplasts. Photosynth. Res. ,12:119–128.

    Article  CAS  Google Scholar 

  • Pfündel, E., Dilley, R.A., Gilmore, A. and Yamamoto, H.Y. (1991) Delocalized ΔH+ drives the violaxanthin → zeaxanthin conversion much more effectively than localized ΔμH+ having the equivalent capacity for ATP formation. Plant Physiol. Suppl., 96:16.

    Google Scholar 

  • Prenzel, U. and Lichtenthaler, H.K. (1982) Localization of ß-carotene in chlorophyll a-proteins and changes in its levels during short-term high light exposure of plants. In: Wintermans, J.F.G.M. and Kuiper, P.J.C. (eds.), Biochemistry and Metabolism of Plant Lipids. Elsevier, Amsterdam, pp. 565–572.

    Google Scholar 

  • Rees, D., Young, A., Noctor, G. et al. (1989) Enhancement of the ΔpH-dependent dissipation of excitation energy in spinach chloroplasts by light-activation; correlation with the synthesis of zeaxanthin. FEBS Lett. ,256:85–90.

    Article  CAS  Google Scholar 

  • Rees, D., Noctor, G. and Horton, P. (1990) The effect of high-energy-state excitation quenching on maximum and dark level chlorophyll fluorescence yield. Photosynth. Res., 25:199–211.

    Article  CAS  Google Scholar 

  • Rock, C.D. and Zeevaart, J.A.D. (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc. Natl. Acad. Sci. USA ,88: 7496–7499.

    Article  PubMed  CAS  Google Scholar 

  • Sapozhnikov, D.I. (1973) Investigation of the violaxanthin cycle. PureAppl. Chem. ,35:47– 61.

    Article  CAS  Google Scholar 

  • Sapozhnikov, D.I., Kyzsovskaya, T.A. and Maevskaya, A.N. (1957) Change in the interrelationship of the basic carotenoids of the plastids of green leaves under the action of light. Doklady Akademy Nauk SSSR, Botanical Sciences Sections ,113:74–76.

    Google Scholar 

  • Schreiber, U. and Neubauer, C. (1990) O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence. Photosynth. Res. ,25: 279–293.

    Article  CAS  Google Scholar 

  • Schultz, G., Heintze, A., Hoppe, P. et al. (1992) Tocopherol and carotenoid synthesis in chloroplasts. Tight linkage to plastidic carbon metabolism in developing chloroplasts. In: Pell, E.J. and Steffen, K.L. (eds.), Active Oxygen/Oxidative Stress and Plant Metabolism. American Society of Plant Physiologists, Rockville, pp. 156–170.

    Google Scholar 

  • Siefermann, D. and Yamamoto, H.Y. (1974a) Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. HI. Reaction kinetics and effect of light intensity on de-epoxidase activity and substrate availability. Biochim. Biophys. Acta ,357:144–150.

    Article  PubMed  CAS  Google Scholar 

  • Siefermann, D. and Yamamoto, H.Y. (1974b) Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. V. Dehydroascorbate, a link between photosynthetic electron transport and de-epoxidation. In: Avron, M. (ed.) Proceedings of 3rd International Congress on Photosynthesis ,Vol. 3. Elsevier, Amsterdam, pp. 1991–1998.

    Google Scholar 

  • Siefermann, D. and Yamamoto, H.Y. (1975) Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. A transmembrane model for the violaxanthin cycle. Arch. Biochem. Biophys. ,171:70–77.

    Article  PubMed  CAS  Google Scholar 

  • Siefermann, D. and Yamamoto, H.Y. (1976) Light-induced de-epoxidation in lettuce chloroplasts. VI. De-epoxidation in grana and stroma lamellae. Plant Physiol. ,57:939– 940.

    Article  PubMed  CAS  Google Scholar 

  • Siefermann-Harms, D. (1977) The xanthophyll cycle in higher plants. In: Tevini, M. and Lichtenthaler, H.K. (eds.), Lipids and Lipid Polymers in Higher Plants. Springer, Berlin, pp. 218–230.

    Chapter  Google Scholar 

  • Siefermann-Harms, D. (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim. Biophys. Acta ,811: 325–355.

    Article  CAS  Google Scholar 

  • Siefermann-Harms, D. (1988) High performance liquid chromatography of chloroplast pigments. One-step separation of carotene and xanthophyll isomers, chlorophyll and pheophytin. J. Chromatogr. ,448:411–416.

    Article  CAS  Google Scholar 

  • Siefermann-Harms, D., Joyard, J. and Douce, R. (1978) Light-induced changes of the carotenoid levels in chloroplast envelopes. Plant Physiol. ,61:530–533.

    Article  PubMed  CAS  Google Scholar 

  • Somersalo, S. and Krause, G.H. (1990) Photoinhibition at chilling temperatures and effects of freezing stress on cold acclimated spinach leaves in the field. A fluorescence study. Physiol. Plant. ,79:617–622.

    Article  PubMed  CAS  Google Scholar 

  • Stransky, H. and Hager, A. (1970a) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-Cyclus in verschiedenen Algenklassen. II. Xanthophyceae. Arch. Mikrobiol. ,71:164–190.

    Article  PubMed  CAS  Google Scholar 

  • Stransky, H. and Hager, A. (1970b) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyll-Cyclus in verschiedenen Algenklassen. IV. Cyanophyceae und Rhodophyceae. Arch. Mikrobiol. ,72:84–96.

    Article  PubMed  CAS  Google Scholar 

  • Thayer, S.S. and Björkman, O. (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth. Res. ,23:331–343.

    Article  CAS  Google Scholar 

  • Weis,E. and Berry, J.A.( 1987) Quantum efficiency of photosystem II in relation to “energy”-dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta ,894:198– 208.

    Article  CAS  Google Scholar 

  • Willemönas, M. and Monas, E. (1991) Relationship between growth irradiance and the xanthophyll cycle in the diatom Nitzschiapalea. Physiol. Plant. ,83:449–456.

    Article  Google Scholar 

  • Wright, S.W. and Shearer, J.D. (1984) Rapid extraction and high-performance liquid chromatography of chlorophylls and carotenoids from marine phytoplankton. J. Chromatogr. ,294:281–295.

    Article  CAS  Google Scholar 

  • Yamamoto, H.Y. (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl. Chem. ,51:639–648.

    Article  CAS  Google Scholar 

  • Yamamoto, H.Y. and Higashi, R.M. (1978) Violaxanthin de-epoxidase; lipid composition and substrate specificity. Arch. Biochem. Biophys., 190:514–522.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, H.Y. and Kamite, L. (1972) The effects of dithiothreitol on violaxanthin deepoxidation and absorbance changes in the 500-nm region. Biochim. Biophys. Acta, 267:538–543.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, H.Y., Nakayama, T.O.M. and Chichester, CO. (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch. Biochem. ,97:168–173.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, H.Y., Chang, J.L. and Aihara, M.S. (1967) Light-induced interconversions of violaxanthin and zeaxanthin in New Zealand spinach-leaf segments. Biochim. Biophys. Acta ,141:342–347.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, H.Y., Chenchin, E.E. and Yamada, D.K. (1974) Effect of chloroplast lipids on violaxanthin de-epoxidase activity. In: Avron, M. (ed.) Proceedings of 3rd International Congress on Photosynthesis. Elsevier, Amsterdam, pp. 1999–2006.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Demmig-Adams, B., Adams, W.W. (1993). The xanthophyll cycle. In: Young, A.J., Britton, G. (eds) Carotenoids in Photosynthesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2124-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2124-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4942-9

  • Online ISBN: 978-94-011-2124-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics