Skip to main content

Biosynthesis of carotenoids

  • Chapter
Carotenoids in Photosynthesis

Abstract

The carotenoids that are found in the photosynthetic pigment-protein complexes of higher plants, algae and phototrophic bacteria, including cyanobacteria, are C40 tetraterpenes. They are biosynthesised by a specialised branch of the isoprenoid or terpenoid pathway which is also used for the biosynthesis of a wide variety of other important compounds. All isoprenoid compounds are built up from the C5 “isoprene unit” the carbon skeleton of which is clearly seen in the important intermediate isopentenyl diphosphate (IDP). A series of diphosphate intermediates with carbon chains consisting of multiples of five carbon atoms is then built up from this isoprene unit intermediate. In the first step of this process, IDP undergoes a double bond isomerisation to give dimethylallyl diphosphate (DMADP). The prenyl transferase enzymes then build up the isoprenoid chain from these two intermediates. The first condensation, between DMADP and IDP, gives the C10 compound geranyl diphosphate (GDP), which is the precursor of monoterpenes. Further additions of IDP then extend the chain to produce, successively, the Cl5 farnesyl diphosphate (FDP), precursor to the sesquiterpenes, triterpenes and sterols, and the C20 geranylgeranyl diphosphate (GGDP), which gives rise to the carotenoids and to the diterpenes including phytol, which provides the isoprenoid sidechain of the chlorophylls and, in most cases, the bacteriochlorophylls. The general outline of the isoprenoid pathway, illustrating the biosynthesis of carotenoids in relation to that of other isoprenoid compounds, is given in Fig. 4.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, G.A., Alberti, M., Leach, F. and Hearst, J.E. (1989) Nucleotide sequence, organisation, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Molec. Gen. Genet. ,216:254–268.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, G. A., Schmidt, A., Sandmann, G. and Hearst, J.E. (1990) Genetic and biochemical characterisation of carotenoid biosynthesis mutants of Rhodobacter capsulatus. J. Biol. Chem. ,265:8329–8338.

    PubMed  CAS  Google Scholar 

  • Bahl, J. (1977) Chlorophyll, carotenoid and lipid content in Triticum sativa L. Plastid envelopes, prolamellar bodies, stroma lamellae and grana. Planta ,136:21–24.

    Article  CAS  Google Scholar 

  • Barry, P., Young, A.J. and Britton, G. (1991) Accumulation of pigments during the greening of etiolated seedlings of Hordeum vulgare. J. Exp. Bot. ,42:229–234.

    Article  CAS  Google Scholar 

  • Bartley, G.E. and Scolnik, P.A. (1989) Carotenoid biosynthesis in photosynthetic bacteria. J. Biol. Chem. ,264:13109–13113.

    PubMed  CAS  Google Scholar 

  • Bartley, G.E., Viitanen, P.V., Pecker, I. et al. (1991) Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desturase, an enzyme of the carotenoid biosynthesis pathway.Proc. Natl. Acad. Sci. USA ,88:6532–6536.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, P. and Kleinig, H. (1990) On the desaturation and cyclisation reactions of carotenes in chromoplast membranes. In: Krinsky, NX, Mathews-Roth, M.M. and Taylor, R.F. (eds.), Carotenoids: Chemistry and Biology. Plenum, New York, pp. 195–206.

    Google Scholar 

  • Beyer, P., Mayer, M. and Kleinig, H. (1989) Molecular oxygen and the state of geometric isomerism of intermediates are essential in the carotene desaturation and cyclization reactions in daffodil chromoplasts. Eur. J. Biochem. ,184:141–150.

    Article  PubMed  CAS  Google Scholar 

  • Bird, C.R., Ray, J.A., Fletcher, J.D. et al. (1991) Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. Bio/Technology ,9:635– 639.

    Article  CAS  Google Scholar 

  • Bramley, P.M. (1985) The in vitro biosynthesis of carotenoids. Adv. Lip. Res. ,21:243–279.

    CAS  Google Scholar 

  • Bramley, P.M. (1990) The use of cell-free systems in studies of carotenoid biosynthesis. In: Krinsky, N.I., Mathews-Roth, M.M. and Taylor, R.F. (eds.), Carotenoids:Chemistry and Biochemistry. Plenum Press, New York, pp. 185–194.

    Google Scholar 

  • Britton, G. (1976) Biosynthesis of carotenoids. In: Goodwin, T.W. (ed.), Chemistry and Biochemistry of Plant Pigments ,2nd Ed., Vol. 1. Academic Press, New York, pp. 262– 327.

    Google Scholar 

  • Britton, G. (1985) Stable isotopes in carotenoid biochemistry. Pure Appl. Chem. ,57:701– 708.

    Article  CAS  Google Scholar 

  • Britton, G. (1988) Biosynthesis of carotenoids. In: Goodwin, T.W. (ed.), Plant Pigments. Academic Press, New York, pp. 133–182.

    Google Scholar 

  • Britton, G. (1990a) Carotenoid biosyntheis -an overview. In: Krinsky, N.I., Mathews-Roth, M.M. and Taylor, R.F. (eds.), Carotenoids: Chemistry and Biology. Plenum Press, New York and London, pp. 167–184.

    Google Scholar 

  • Britton, G. (1990b) The stereochemistry of carotenoid biosynthesis. In: Atta-ur-Rahman (ed.), Studies in Natural Products Chemistry ,Vol. 7. Elsevier, Amsterdam, pp. 317–367.

    Google Scholar 

  • Britton, G. (1991) The biosynthesis of carotenoids: a progress report. Pure Appl. Chem., 63:101–108.

    Article  CAS  Google Scholar 

  • Britton, G. and Mundy, A.P. (1980) The use of deuterium labelling from deuterium oxide to study the biosynthesis of chloroplast carotenoids. Dev. Plant Biol. ,6:345–350.

    CAS  Google Scholar 

  • Camara, B. (1985) Carotenogenic enzymes from Capsicum chromoplasts. Pure Appl. Chem. ,57:675–677.

    Article  CAS  Google Scholar 

  • Camara, B. and Monéger, R. (1982) Biosyntheic capabilities and localization of enzymatic activities in carotenoid metabolism of Capsicum annuum isolated chloroplasts. Physiol. Végétale ,20:757–773.

    CAS  Google Scholar 

  • Camara, B., Bardat, F. and Monéger, R. (1982) Sites of biosynthesis of carotenoids in Capsicum chromoplasts. Eur. J. Biochem. ,127:255– 258.

    Article  PubMed  CAS  Google Scholar 

  • Chamovitz, D., Misawa, N., Sandmann, G. and Hirschberg, J. (1992) Molecular cloning and expression in E.coli of a cyanobacterial gene coding for phytoene synthase, a carotenoid biosynthesis enzyme. FEBS lett. ,296:305–310.

    Article  PubMed  CAS  Google Scholar 

  • Coomber, S.A., Chaudhri, M., Connor, A. et al. (1990) Localised transposon Tn5mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides. Molec. Microbiol., 4:977– 989.

    Article  CAS  Google Scholar 

  • Davies, B.H. (1980) Carotenoid biosyntheis. In: Czygan, F-C. (ed.), Pigments in Plants ,2nd Ed. Gustav Fischer, Stuttgart, pp. 31–56.

    Google Scholar 

  • Dogbo, O., Laferriere, A., d’Harlingue, A. and Camara, B. (1988) Carotenoid biosynthesis: Isolation and characterisation of a bifunctional enzyme catalyzing the synthesis of phytoene. Proc. Natl. Acad. Sci. USA ,85:7054–7058.

    Article  PubMed  CAS  Google Scholar 

  • Giuliano, G., Pollock, D., Stapp, H. and Scolnik, P.A. (1988) A genetic-physical map of the Rhodobacter capsulatus carotenoid biosynthesis gene cluster. Molec. Gen. Genet., 213:78–83.

    Article  CAS  Google Scholar 

  • Goodwin, T.W. (1971) Biosynthesis. In: Isler, O. (ed.), Carotenoids. Birkhäuser, Basel, pp. 577–636.

    Google Scholar 

  • Goodwin, T.W. (1980) Carotenoids in higher plants. In: Goodwin, T.W. (ed.), The Biochemistry of the Carotenoids ,2nd Ed, Vol. 1 Plants. Chapman and Hall, London, pp. 143–203.

    Chapter  Google Scholar 

  • Gregonis, D.E. and Rilling, H.C. (1974) The stereochemistry of íraw,-phytoene synthesis. Some observations on lycopersene as a carotene precursor and a mechanism for the synthesis of cis- and rans- phytoene. Biochemistry ,13:1538–1542.

    Article  PubMed  CAS  Google Scholar 

  • Grumbach, K.H. and Bach, T.J. (1979) The effect of PSII herbicides, amitrole and SAN6706 on the activity of 3 -hydroxy-3 -methylglutaryl cœnzyme A reductase and the incorporation of [2–14C]-acetate and DL-[2–3H]-mevalonate into chloroplast pigments of radish seedlings. Z. Naturforsch. ,34c:941–943.

    CAS  Google Scholar 

  • Heintze, A., Gorlach, J., Leuschner, C. et al. (1990) Plastid isoprenoid synthesis during chloroplast development. Change from metabolic autonomy to a division-of-labour stage. Plant Physiol. ,93:1121–1127.

    Article  PubMed  CAS  Google Scholar 

  • Henningsen, K.W. and Boynton, J.E. (1970) Macromolecular physiology of plastids. VIII. Pigment and membrane formation in plastids of barley greening under low light intensity. J. Cell Biol ,44:290–304.

    Article  PubMed  CAS  Google Scholar 

  • Hill, H.M., Calderwood, S.K. and Rogers, L.J. (1971) Conversion of lycopene to ß-carotene by plastids isolated from higher plants. Phytochemistry ,10:2051–2058.

    Article  CAS  Google Scholar 

  • Humbeck, K. (1990) Photoisomerisation of lycopene during carotenogenesis in mutant C-6D of Scenedesmus obliquus. Planta ,182:204–210.

    Article  CAS  Google Scholar 

  • Islam,M.A.,Lyrene, S.A., Miller, E.M. and Porter, J.W. (1977) Dissociation of prelycopersene pyrophosphate synthetase from phytoene synthetase complex of tomato fruit plastids. J. Biol. Chem. ,252:1523–1525.

    PubMed  CAS  Google Scholar 

  • Kirk, J.T.O. and Tilney-Bassett, R.A.E. (1978) The Plastids: their Chemistry, Structure, Growth and Inheritance ,2nd Ed. Elsevier-North Holland, Amsterdam.

    Google Scholar 

  • Kleinig, H. (1989) The role of plastids in isoprenoid biosynthesis. Annu. Rev. Plant Physiol. Plant Molec. Biol. ,40:39–59.

    Article  CAS  Google Scholar 

  • Kreuz, K. and Kleinig, H. (1981) Synthesis of prenyllipids in cells of spinach leaf. Compartmentation of enzymes for formation of isopentenyl diphosphate. Eur. J. Biochem. ,141:531–535.

    Article  Google Scholar 

  • Kreuz, K., Beyer, P. and Kleinig, H. (1982) The site of carotenogenic enzymes in chromoplasts from Narcissus pseudonarcissus L. Planta ,154:66–69.

    Article  CAS  Google Scholar 

  • Kushwaha, S.C., Subbarayan, C., Beeler, D.A. and Porter, J.W. (1969) The conversion of lycopene-15,15’-3H to cyclic carotenes by soluble extracts of higher plant plastids. J. Biol. Chem. ,244:3635–3642.

    PubMed  CAS  Google Scholar 

  • Kushwaha, S.C., Suzue, G., Subbarayan, C. and Porter, J.W. (1970) The conversion of phytoene-14C into acyclic, monocyclic and dicyclic carotenes and the conversion of lycopene-15,15 ‘-3H to mono-and dicyclic carotenes by soluble enzyme systems obtained from the plastids of tomato fruit. J. Biol. Chem. ,245:4708–4717.

    PubMed  CAS  Google Scholar 

  • Liaaen-Jensen, S. (1969) Selected examples of structure determination of natural carotenoids. Pure Appl Chem. ,20:421–448.

    Article  PubMed  CAS  Google Scholar 

  • Lütke-Brinkhaus, F. and Kleinig, H. (1987) Carotenoid and chlorophyll biosynthesis in isolated plastids from mustard seedling cotyledons (Sinapis alba L.) during etioplast-chloroplast conversion. Planta ,170:121–129.

    Article  Google Scholar 

  • Marrs, B.L. (1982) Genetic analysis of carotenogenesis in Rhodopseudomonas capsulata. In: Britton, G, and Goodwin, T.W. (eds.), Carotenoid Chemistry and Biochemistry. Pergamon, Oxford, pp. 273–277.

    Google Scholar 

  • Maudinas, B., Bucholtz, M.L., Papastephanou, C. et al. (1977) The partial purification and properties of aphytoene-synthesizing enzyme system. Arch. Biochem. Biophys. ,180:354– 362.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M., Beyer, P. and Kleinig, H. (1990) Quinone compounds are able to replace molecular oxygen as terminal electron acceptor in phytoene desaturation in chromoplasts of Narcissus pseudonarcissus L. Eur. J. Biochem. ,191:359–363.

    Article  CAS  Google Scholar 

  • McDermott, J.C.B., Britton, G. and Goodwin, T.W. (1973) Carotenoid biosynthesis in a Flavobacterium sp.: Stereochemistry and hydrogen elimination in the desaturation of phytoene to lycopene, rubixanthin and zeaxanthin. Biochem. J. ,134:1115–1117.

    PubMed  CAS  Google Scholar 

  • Milborrow, B.V. (1982) Stereochemical aspects of carotenoid biosynthesis. In: Britton, G. and Goodwin, T.W. (eds.), Carotenoid Chemistry and Biochemistry. Pergamon, Oxford, pp. 279–295.

    Google Scholar 

  • Milborrow, B.V., Swift, I.E. and Netting, A.G. (1982) Stereochemistry of hydroxylation of the carotenoid lutein in Calendula officinalis. Phytochemistry ,21:2853–2857.

    Article  CAS  Google Scholar 

  • Misawa, N., Nakagawa, M., Kobayashi, K. et al. (1990) Elucidation of Erwinia uredovora carotenoid biosynthesis pathway by functional analysis of gene products expressed in Escherichia coli. J. Bacteriol. ,172:6704– 6712.

    PubMed  CAS  Google Scholar 

  • Moshier, S.E. and Chapman, D.J. (1973) Biosynthetic studies on aromatic carotenoids. Biochem. J. ,136:395–404.

    PubMed  CAS  Google Scholar 

  • Papastephanou, C, Barnes, F.J., Briedis, A.V. and Porter, J.W. (1973) Enzymatic synthesis of carotenes by cell-free preparations of fruit of several genetic selections of tomatoes. Arch. Biochem. Biophys. ,157:415–425.

    Article  PubMed  CAS  Google Scholar 

  • Pecker, I., Chamowitz, D., Linden, H. et al. (1992) A single polypeptide catalyzing the conversion of phytoene to ζ-carotene is transcriptionally regulated during tomato fruit ripening. Proc. Natl. Acad. Sci. USA. 89:4926–4966.

    Article  Google Scholar 

  • Pemberton, J.M. and Harding, CM. (1986) Cloning of carotenoid biosynthesis genes from Rhodopseudomonas sphaeroides. Curr. Microbiol. ,14:25–29.

    Article  CAS  Google Scholar 

  • Qureshi, A.A., Andrewes, A.G., Qureshi, N. and Porter, J.W. (1974) The enzymatic conversion of cis-[14C]-phytofluene, trans-[ 14C] -phytofluene and trans-[ 14C]-ζ-carotene to moreunsaturated acyclic, monocyclic and dicyclic carotenes by a cell-free preparation of red tomato fruits. Arch. Biochem. Biophys. ,162:93–107.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, L.J., Shah, S.P.J. and Goodwin, T.W. (1966) Compartmentation of terpenoid biosynthesis in green plants. Biochem. J. ,114:395–405.

    Google Scholar 

  • Sandmann, G. (1991) Light-dependent switch from formation of poly-cis carotenes to all-trans carotenoids in the Scenedesmus mutant C-6D. Arch. Microbiol. ,155:229–233.

    Article  CAS  Google Scholar 

  • Sandmann, G. and Bramley, P.M. (1985a) Carotenoid biosynthesis by Aphanocapsa homogenates coupled to a phytoene-generating system from Phycornyces blakesleeanus. Planta ,164:259–263.

    Article  CAS  Google Scholar 

  • Sandmann, G. and Bramley, P.M. (1985b) The in vitro biosynthesis of ß-cryptoxanthin and related xanthophylls with Aphanocapsa membranes. Biochim. Biophys. Acta ,843:73– 77.

    Article  CAS  Google Scholar 

  • Sandmann, G. and Kowalczyk, S. (1989) In vitro carotenogenesis and characterisation of the phytoene desaturase reaction in Anacyctis. Biochem. Biophys. Res. Commun. ,163:916– 921.

    Article  PubMed  CAS  Google Scholar 

  • Sergeant, J.M. and Britton, G. (1984) Observations on the biosynthesis of chloroplast carotenoids. In: Sybesma, C. (ed.), Advances in Photosynthesis Research ,Vol. IV. Martinus Nijhoff/Dr W. Junk, Dordrecht, The Netherlands, pp. 779–782.

    Google Scholar 

  • Spurgeon, S.L. and Porter, J.W. (1983) Biosynthesis of carotenoids. In: Porter, J.W. and Spurgeon, S.L. (eds.), Biosynthesis oflsoprenoid Compounds ,Vol. 2. Wiley, New York, pp. 1–122.

    Google Scholar 

  • Swift, I.E. and Milborrow, B.V. (1981) Stereochemistry of allene biosynthesis and the formation of the acetylenic carotenoids diadinoxanthin and peridinin (C37) from neoxanthin. Biochem. J., 199:69–74.

    PubMed  CAS  Google Scholar 

  • Swift, I.E., Milborrow, B.V. and Jeffrey, S.W. (1982) Formation of neoxanthin, diadinoxanthin and peridinin from [14C] zeaxanthin by a cell-free system from Amphidinium carterae. Phytochemistry ,21:2859–2864.

    Article  CAS  Google Scholar 

  • Virgin, H.I., Kahn, A. and Von Wettstein, D. (1963) The physiology of chlorophyll formation in relation to structural changes in the chloroplast. Photochem. Photobiol., 2:83–91.

    Article  CAS  Google Scholar 

  • Walton, T.J., Britton, G. and Goodwin, T.W. (1969) Biosynthesis of xanthophylls in higher plants. Stereochemistry of hydroxylation atC-3. Biochem. J., 112:383–385.

    PubMed  CAS  Google Scholar 

  • Williams, R.J.H., Britton, G. and Goodwin, T.W. (1967). The biosynthesis of cylic carotenes. Biochem. J., 105:99–105.

    PubMed  CAS  Google Scholar 

  • Yamamoto, H. Y. (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl. Chem. ,51:639–648.

    Article  CAS  Google Scholar 

  • Young, D.A., Bauer, C.A., Williams, J.C. and Marrs, B.L. (1989) Genetic evidence for superoperonal organisation of genes for photosynthetic pigments and pigment-binding proteins in Rhodobacter capsulata. Molec. Gen. Genet. ,218:1–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Britton, G. (1993). Biosynthesis of carotenoids. In: Young, A.J., Britton, G. (eds) Carotenoids in Photosynthesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2124-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2124-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4942-9

  • Online ISBN: 978-94-011-2124-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics