Skip to main content

Plant water relations and the effects of elevated CO2: a review and suggestions for future research

  • Chapter
  • 272 Accesses

Part of the book series: Advances in vegetation science ((AIVS,volume 14))

Abstract

Increased ambient carbon dioxide (CO2) has been found to ameliorate water stress in the majority of species studied. The results of many studies indicate that lower evaporative flux density is associated with high CO2-induced stomatal closure. As a result of decreases in evaporative flux density and increases in net photosynthesis, also found to occur in high CO2 environments, plants have often been shown to maintain higher water use efficiencies when grown at high CO2 than when grown in normal, ambient air. Plants grown at high CO2 have also been found to maintain higher total water potentials, to increase biomass production, have larger root-to-shoot ratios, and to be generally more drought resistant (through avoidance mechanisms) than those grown at ambient CO2 levels. High CO2-induced changes in plant structure (i.e., vessel or tracheid anatomy, leaf specific conductivity) may be associated with changes in vulnerability to xylem cavitation or in environmental conditions in which runaway embolism is likely to occur. Further study is needed to resolve these important issues. Methodology and other CO2 effects on plant water relations are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A =:

net photosynthesis

Ca =:

ambient [CO2]

Ci =:

internal [CO2]

E =:

evaporative flux density

g1 =:

leaf conductance

gs =:

stomatal conductance

LSR =:

leaf specific conductivity

IRGA =:

infrared gas analyzer

LAI =:

leaf area index

PAR =:

photosynthetically active radiation

Ψ =:

total plant water potential

Ψsoil =:

soil water potential

Ψs :

solute potential

Ψpt =:

tugor pressure potential

Ψpx =:

xylem pressure potential

RH =:

relative humidity

RWC =:

relative water content

R:S =:

root to shoot ratio

SLA =:

specific leaf area

SLW =:

specific leaf weight

SPAC =:

soil-plant-atmosphere-continuum

SWC =:

soil water content

VPD =:

vapor pressure deficit

WUE =:

water use efficiency

References

  • Akita, S. & Moss, D. N. 1972. Differential stomatal response between C3 and C4 species to atmospheric CO2 concenration and light. Crop Sci. 12: 789–793.

    Article  Google Scholar 

  • Arnone, J. A. & Gordon, J. C. 1990. Effect of nodulation , nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings of Alnus rubra Bong. New Phytol. 116: 55–66.

    Article  CAS  Google Scholar 

  • Barr, A. G., King, K. M., Thurtell, G. W. & Graham, M. E. D. 1990. Humidity and soil water influence the transpiration response of Maize to CO2 enrichment. Can. J. Plant. Sci. 70: 941–948.

    Article  Google Scholar 

  • Beadle, C. L., Jarvis, P. G. & Neilson, R. E. 1979. Leaf conductance as related to xylem water potential and carbon dioxide concentration in Sitka spruce. Physiol. Plant. 45: 158–166.

    Article  CAS  Google Scholar 

  • Byrne, G. F., Begg, J. E., & Hansen, G. K. 1977. Cavitation and resistance to water flow in plant roots. Agric. Meteorol. 18: 21–25.

    Article  Google Scholar 

  • Carlson, R. W. & Bazzaz, F. A. 1980. The effects of elevated CO2 concentrations on growth, photosynthesis, transpiration, and water use efficiency of plants. In: Singh, J. J. & Deepak, A. (eds). Environmental and climatic impact of coal utilization pp. 609–623. Academic Press, New York.

    Google Scholar 

  • Chaudhuri, U. N., Kirkham, M. B., Kanemasu, E. T. 1990. Root growth of winter wheat under elevated carbon dioxide and drought. Crop Sci. 30: 853–857.

    Article  CAS  Google Scholar 

  • Cheung, Y. N. S., Tyree, M. T., Dainty, J. 1976. Some posible sources of error in determining bulk elastic moduli and other parameters from pressure-volume curves of shoots and leaves. Can. J. Bot. 54: 758–765.

    Article  Google Scholar 

  • Conroy, J., Barlow, E. W. R. & Bevege, D. I. 1986. Response of Pinus radiata seedlings to carbon dioxide enrichment at different levels of water and phosphorous: growth, morphology and anatomy. Ann. Bot. 57: 165–177.

    Google Scholar 

  • Conroy, J. P., Küppers, M., Küppers, B., Virgona, J. & Barlow, E. W. R. 1988a. The influence of CO2 enrichment, phosphorous deficiency and water stress on the growth, conductance and water use of Pinus radiata D. Don. Plant, Cell. & Environ. 11: 91–98.

    CAS  Google Scholar 

  • Conroy, J. P., Virgona, J. M., Smillie, R. M. & Barlow, E. W. 1988b. Influence of drought acclimation and CO2 enrichment on osmotic adjustment and chlorophyll a fluorescence of sunflower during drought. Plant Physiol. 86: 1108–1115.

    Article  PubMed  CAS  Google Scholar 

  • Conroy, J. P., Milham, P. J., Mazur, M. & Barlow, E. W. R. 1990. Growth, dry weight partitioning and wood properties of Pinus radiata D. Don after 2 years of CO2 enrichment. Plant, Cell & Environ. 13: 329–337.

    Article  Google Scholar 

  • Dahlman, R. C., Strain, B. R. & Rogers, H. H. 1985. Research on the response of vegetation to elevated atmospheric carbon dioxide. J. Environ. Qual. 14: 1–8.

    Article  CAS  Google Scholar 

  • Del Castillo, D., Acock, B., Reddy, V. R. & Acock, M. C. 1989. Elongation and branching of roots on soybean plants in a carbon dioxide-enriched environment. Agron. J. 81: 692–695.

    Article  Google Scholar 

  • Dixon, M. A., Butt, J. A., Murr, D. P., Tsujita, M. J. 1988. Water relations of cut greenhouse roses: the relationship between stem water potential, hydraulic conductance and cavitation. Sci Hort. 36: 109–118.

    Article  Google Scholar 

  • Dixon, M. A., Tyree, M. T. 1984. A new stem hygrometer, corrected for temperature gradients and calibrated against the pressure bomb. Plant Cell & Environ. 7: 693–697.

    Google Scholar 

  • Downton, W. J. S., Grant, W. J. R. & Chacko, E. K. 1990. Effects of elevated carbon dioxide on the photosynthesis and early growth of mangosteen (Garcinia mangostana L.). Sci. Hort. 44: 215–225.

    Article  Google Scholar 

  • Frederick, J. R., Alm, D. M., Hesketh, J. D. & Below, F. E. 1990. Overcoming drought-induced decreases in soybean leaf photosynthesis by measuring with CO2-enriched air. Photo. Res. 25: 49–57.

    Article  Google Scholar 

  • Goudriaan, J. & de Ruiter, H. E. 1983. Plant growth in reonse to CO2 enrichment, at two levels of nitrogen and phosphorous supply. 1. Dry matter, leaf area and development. Neth. J. Agric. Sci. 31: 157–169.

    CAS  Google Scholar 

  • den Hertog, J., Stulen, I., Lambers, H. 1992. Assimilation, respiration and allocation of carbon in Plantago major as affected by atmospheric CO2levels: a case study. Vegetatio 104/105: 369–378.

    Article  Google Scholar 

  • Higginbotham, K. O., Mayo, J. M., L’Hirondelle, S. & Krystofiak, D. K. 1985. Physiological ecology of lodgepole pine (Pinus contorta) in an enriched CO2 environment. Can. J. For. Res. 15: 417–421.

    Article  Google Scholar 

  • Hollinger, D. Y. 1987. Gas exchange and dry matter allocation responses to elevation of atmospheric CO2 concentration in seedlings of three tree species. Tree Physiol. 3: 193–202.

    Article  PubMed  Google Scholar 

  • Idso, S. B. 1988. Three phases of plant response to atmospheric CO2 enrichment. Plant Physiol. 87: 5–7.

    Article  PubMed  CAS  Google Scholar 

  • Idso, S. B., Kimball, B. A., Anderson, M. G. & Szarek, S. R. 1986. Growth response of a succulent plant, Agave vilmoriniana, to elevated CO2. Plant Physiol. 80: 796–797.

    Article  PubMed  CAS  Google Scholar 

  • Idso, S. B., Kimball, B. A. & Mauney, J. R. 1987. Atmospheric carbon dioxide enrichment effects on cotton midday foliage temperature: Implications for plant water use efficiency. Agron. J. 79: 667–672.

    Article  Google Scholar 

  • Idso, S. B., Kimball, B. A. & Mauney, J. R. 1988. Effects of atmospheric CO2 enrichment on root: shoot ratios of carrot, radish, cotton and soybean. Agric. Ecosystems Environ. 21: 293–299.

    Article  Google Scholar 

  • Imai, K. & Coleman, D. F. 1983. Elevated atmospheric partial pressure of carbon dioxide and dry matter production of konjak (Amorphophallus konjak K. Koch). Photo. Res. 4: 331–336.

    CAS  Google Scholar 

  • Jones, P., Allen, L. H., Jones, J. W., Boote, K. J. & Campbell, W. J. 1984. Soybean canopy growth, photosynthesis, and transpiration responses to whole-season carbon dioxide enrichment. Agron. J. 76: 633–637.

    Article  CAS  Google Scholar 

  • Khan, M. A. H. & Madsen, A. 1986. Leaf diffusive resistance and water economy in carbon dioxide-enriched rice plants. New Phytol. 104: 215–223.

    Article  Google Scholar 

  • Kramer, P. J. 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. Bioscience 31: 29–33.

    Article  CAS  Google Scholar 

  • Kramer, P. J. 1983. Water relations of plants. Academic press, Orlando, San Diego, New York.

    Google Scholar 

  • Leadley, P. W., Reynolds, J. A., Thomas, J. F. & Reynolds, J. F. 1987. Effects of CO2 enrichment on internal leaf sur-face area in soybeans. Bot. Gaz. 148: 137–140.

    Article  Google Scholar 

  • Luxmoore, R. J., O’Neill, E. G., Ells, J. M. & Rogers, H. H. 1986. Nutrient uptake and growth responses of Virginia pine to elevated atmospheric carbon dioxide. J. Environ. Qual. 15: 244–251.

    Article  CAS  Google Scholar 

  • Marks, S. & Strain, B. R. 1989. Effects of drought and CO2 enrichment on competition between two old-field perennials. NewPhytol. 111: 181–186.

    Google Scholar 

  • Morison, J. I. L. 1985. Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell and Environ. 8: 467–474.

    Article  Google Scholar 

  • Morison, J. I. L. & Gifford, R. M. 1983. Stomatal sensitivity to carbon dioxide and humidity. Plant Physiol. 71: 789–796.

    Article  PubMed  CAS  Google Scholar 

  • Nijs, I., Impens, I. & Behaeghe, T. 1988. Effects of rising atmospheric carbon dioxide concentration on gas exchange and growth of perennial ryegrass. Photosynthetica 22: 44–50.

    Google Scholar 

  • Nijs, I., Impens, I. & Behaeghe, T. 1989a. Effects of long-term atmospheric CO2 concentration on Lolium perenne and Trifolium repens canopies in the course of a terminal drought stress period. Can. J. Bot. 67: 2720–2725.

    Article  Google Scholar 

  • Nijs, I., Impens, I. & Behaeghe, T. 1989b. Leaf and canopy responses of Lolium perenne to long-term elevated atmospheric carbon-dioxide concentration. Planta 177: 312–320.

    Article  CAS  Google Scholar 

  • Norby, R. J. & O’Neill, E. G. 1989. Growth dynamics and water use of seedlings of Quercus alba L. on CO2-enriched atmospheres. New Phytol. 111: 491–500.

    Article  Google Scholar 

  • Norby, R. J., O’Neill, E. G. & Luxmoore, R. J. 1986. Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient-poor soil. Plant Physiol. 82: 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Oberbauer, S. F., Strain, B. R. & Fetcher, N. 1985. Effect of CO2-enrichment on seedling physiology and growth of two tropical tree species. Physiol. Plant. 65: 352–356.

    Article  CAS  Google Scholar 

  • Oechel, W. C. & Strain, B. R. 1985. 6. Native species responses to increased atmospheric carbon dioxide concentration. In: Strain, B. R. & Cure, J. D. (eds), Direct effects of increasing CO2 on vegetation. pp. 117–154, United States Dept. of Energy, DOE/ER-0238.

    Google Scholar 

  • Pallas, J. E., jr. 1965. Transpiration and stomatal opening with changes in carbon dioxide content of the air. Science 147: 169–171.

    Article  Google Scholar 

  • Peñuelas, J. & Matamala, R. 1990. Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO2 increase. J. Exp. Bot. 41: 1119–1124.

    Article  Google Scholar 

  • Reekie, E. G. & Bazzaz, F. A. 1989. Competition and patterns of resource use among seedlings of five tropical trees grown at ambient and elevated CO2. Oecologia 79: 212–222.

    Article  Google Scholar 

  • Rogers, H. H. 1983. Response of agronomic and forest species to elevated atmospheric carbon dioxide. Science 220: 428–429.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, H. H., Bingham, G. E., Cure, J. D., Smith, J. M. & Surano, K. A. 1983. Responses of selected plant species to elevated carbon dioxide in the field. J. Environ. Qual. 12: 569–574.

    Article  CAS  Google Scholar 

  • Rogers, H. H., Sionit, N., Cure, J. D., Smith, J. M. & Bingham, G. E. 1984. Influence of elevated carbon dioxide on water relations of soybeans. Plant Physiol. 74: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, N. J. 1981. The increasing CO2 concentration in the atmosphere and its implication on agricultural productivity. Climatic Change 3: 265–279.

    CAS  Google Scholar 

  • Rozema, J., Dorel F., Janissen, R., Lenssen, E., Broekman, R., Arp, W. & Drake, B. G. 1991A. Effect of elevated atmospheric CO2 on growth, photosynthesis and water relations of salt marsh grass species. Aquat. Bot. 39: 45–55.

    Article  Google Scholar 

  • Rozema, J., Lensen, G. M., Arp, W. J. & van de Staaij, J. W. M. 1991B. Global change, the impact of the greenhouse effect (atmospheric CO2 enrichment) and the increased UV-B radiation responses to environmental stresses, pp. 220–231 Kluwer Academic Publications, The Netherlands.

    Google Scholar 

  • Rozema, J. 1993. Responses to atmospheric CO2 enrichment: interactions with some soil and atmospheric conditions. Vegetatio 104/105: 173–190.

    Article  Google Scholar 

  • Sasek, T. W. & Strain, B. R. 1989. Effects of carbon dioxide enrichment on the expansion and size of kudzu (Pueraria lobata) leaves. Weed Sci. 37: 23–28.

    Google Scholar 

  • Sionit, N. & Patterson, D. T. 1985. Responses of C4 grasses to atmospheric CO2 enrichment. II. Effect of water stress. Crop Sci. 25: 533–537.

    Article  Google Scholar 

  • Sionit, N., Strain, B. R., Hellmers, H. & Kramer, P. J. 1981. Effects of atmospheric CO2 concentration and water stress on water relations of wheat. Bot. Gaz. 142: 191–196.

    Article  Google Scholar 

  • Sionit, N., Strain, B. R., Hellmers, H., Riechers, G. H. & Jaeger, C. H. 1985. Long-term atmospheric CO2 enrichment affects the growth and development of Liquidambar styraciflua and Pinus taeda seedlings. Can. J. For. Res. 15: 468–471.

    Article  Google Scholar 

  • Sperry, J. S., Tyree, M. T., Donnelly, J. A. 1988. Vulnerability of xylem to embolism in a mangrove vs an inland species of Rizophoraceae. Physiol. Plant. 74: 276–283.

    Article  Google Scholar 

  • Sperry, J. S., Tyree, M. T. 1988. Mechanism of water stress-induced xylem embolism. Plant Physiol. 88: 581–587.

    Article  PubMed  CAS  Google Scholar 

  • Sperry, J. S., Tyree, M. T. 1990. Water-stress-induced xylem embolism in three species of conifers. Plant, Cell & Environ. 13: 427–436.

    Article  Google Scholar 

  • Szarek, S. R., Holthe, P. A. & Ting, I. P. 1987. Minor physiological response to elevated CO2 by the CAM plant Agave vilmoriniana. Plant Physiol. 83: 938–940.

    Article  PubMed  CAS  Google Scholar 

  • Teskey, R. O., Fites, J. A., Samuelson, L. J. & Bongarten, B. C. 1986. Stomatal and nonstomatal limitations to net photosynthesis in Pinus taeda L. under different environmental conditions. Tree Physiol. 2: 131–142.

    Article  PubMed  Google Scholar 

  • Thomas, J. F. & Harvey, C. N. 1983. Leaf anatomy of four species grown under continuous CO2 enrichment. Bot. Gaz. 144: 303–309.

    Article  Google Scholar 

  • Tolley, L. C. & Strain, B. R. 1984a. Effects of CO2 enrichment on growth of Liquidambar styraciflua and Pinus taeda seed lings under different irradiance levels. Can. J. For. Res. 14: 343–350.

    Article  Google Scholar 

  • Tolley, L. C. & Strain, B. R. 1984b. Effects of CO2 enrichment and water stress on growth of Liquidambar styraciflua and Pinus taeda seedlings. Can. J. Bot. 62: 2135–2139.

    Article  Google Scholar 

  • Tyree, M. T. 1976. Negative turgor pressure in plant cells: fact or fallacy? Can. J. Bot. 54: 2738–2746.

    Article  Google Scholar 

  • Tyree, M. T. 1988. A dynamic model for water flow in a single tree: evidence that models must account for hydraulic architecture. Tree Physiol. 4: 195–217.

    Article  PubMed  Google Scholar 

  • Tyree, M. T. 1989. Cavitation in trees and the hydraulic sufficiency of woody stems. Annales des Sciences Forestières 46 (suppl): 330–337.

    Article  Google Scholar 

  • Tyree, M. T. & Dixon, M. A. 1986. Water stress induced cavitation and embolism in some woody plants. Physiol. Plant. 66: 397–405.

    Article  Google Scholar 

  • Tyree, M. T. & Ewers, F. W. 1991. The hydraulic architecture of trees and other woody plants. New Phytol. 119: 345–360.

    Article  Google Scholar 

  • Tyree, M. T., Fiscus, E. L., Wullschleger, S. D. & Dixon, M. A. 1986. Detection of xylem cavitation in corn under field conditions. Plant Physiol. 82: 597–599.

    Article  PubMed  CAS  Google Scholar 

  • Tyree, M. T. & Jarvis, P. G. 1982. Water in tissues and cells. In: Nobel, P. S., Osmond, C. B., Ziegler, H., (eds) Encyclopedia of Plant Physiology (N. S.) Springer-Verlag, Berlin, Heidelberg, New York. vol 12B pp 37–77.

    Google Scholar 

  • Tyree, M. T., MacGregor, M. E., Petrov, A., Upenieks, M. I. 1978. A comparison of systematic errors between the Richards and Hammel methods of measuring tissue-water relations parameters. Can. J. Bot. 56: 2153–2161.

    Article  Google Scholar 

  • Tyree, M. T., Richter, H. 1981. Alternative methods of analyzing water potential isotherms; some cautions and clarifications. I. The impact of non-ideality and of some experimental errors. J. Exp. Bot. 32: 643–653.

    Article  Google Scholar 

  • Tyree, M. T., Richter, H. 1982. Alternate methods of analyzing water potential isotherms: some cautions and clarifications. II. Curvilinearity in water potential isotherms. Can. J. Bot. 60: 911–916.

    Article  Google Scholar 

  • Tyree, M. T., Snyderman, D. A., Wilmot, T. R., & Machado, J. L. 1991. Water relations and hydraulic architecture of a tropical tree (Schefflera morototoni): Data models and a comparison to two temperate species (Acer saccharum and Thuja occidentalis). Plant Physiol. 96: 1105–1113.

    Article  PubMed  CAS  Google Scholar 

  • Tyree, M. T. & Sperry, J. S. 1988. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress: Answers from a model. Plant Physiol. 88: 574–580.

    Article  PubMed  CAS  Google Scholar 

  • Tyree, M. T. & Sperry, J. S. 1989. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Phys. Mol. Bio., 40: 19–38.

    Article  Google Scholar 

  • Tyree, M. T. & Sperry, J. S. 1989b. Characterization and propagation of acoustic emission signals in woody plants: towards an improved acoustic emission counter. Plant, Cell and Environ. 12: 371–382.

    Article  Google Scholar 

  • Tyree, M. T. & Wilmot, T. R. 1990. Errors in the calculation of evaporation and leaf conductance in steady-state porometry: The importance of accurate measurement of leaf temperature. Can. J. For. Res. 20: 1031–1035.

    Article  Google Scholar 

  • Tyree, M. T. & Yianoulis, P. 1980. The site of water evaporation from substomatal cavities, liquid path resistances, and hydroactive stomatal closure. Ann. Bot. 46: 175–193.

    Google Scholar 

  • Wray, S. M. & Strain, B. R. 1986. Response of two old field perennials to interactions of CO2 enrichment and drought stress. Amer. J. Bot. 73: 1486–1491.

    Article  Google Scholar 

  • Wong, S. C. 1979. Elevated atmospheric partial pressure of CO2 and plant growth. Oecologia 44: 68–74.

    Article  Google Scholar 

  • Woodward, F. I. 1987. Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327: 617–618.

    Article  Google Scholar 

  • Wulff, R. D. & Strain, B. R. 1982. Effects of CO2 enrichment on growth and photosynthesis in Desmodium paniculatum. Can. J. Bot., 60: 1084–1091.

    Article  Google Scholar 

  • Yianoulis, P, Tyree, M. T. 1984. A model to investigate the effects of evaporative cooling on the pattern of evaporation in sub-stomatal cavities. Ann. Bot. 53: 189–206.

    Google Scholar 

  • Zimmerman, M. H. & Brown, C. L. 1971. Trees structure and function. Springer-Verlag, New York, Heidelberg, Berlin.

    Google Scholar 

  • Ziska, L. H., Hogan, K. P., Smith, A. P. & Drake, B. G. 1991. Growth and photo synthetic response of nine tropical species with long-term exposure to elevated carbon dioxide Oecologia 86: 383–389.

    Article  Google Scholar 

  • Collecting Pseudobomax branches for measurement of embolimsm and cavitation. (Barro Colorado Island, Panama).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Rozema H. Lambers S. C. Van de Geijn M. L. Cambridge

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tyree, M.T., Alexander, J.D. (1993). Plant water relations and the effects of elevated CO2: a review and suggestions for future research. In: Rozema, J., Lambers, H., Van de Geijn, S.C., Cambridge, M.L. (eds) CO2 and biosphere. Advances in vegetation science, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1797-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1797-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4791-3

  • Online ISBN: 978-94-011-1797-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics