Skip to main content

Rising CO2, secondary plant metabolism, plant-herbivore interactions and litter decomposition

Theoretical considerations

  • Chapter
Book cover CO2 and biosphere

Part of the book series: Advances in vegetation science ((AIVS,volume 14))

Abstract

A brief account is given of the ecological significance of quantitatively important secondary plant compounds, mainly those of a phenolic nature, in herbivory and decomposition. Phenolic compounds accumulate to a greater extent in slow-growing species than in fast-growing ones, particularly when soil conditions (nutrients, water) restrict growth. Two hypotheses to explain the increased concentration of phenolics when soil conditions are unfavorable are presented. The first hypothesis (the ‘carbon supply model of secondary plant metabolism’) considers the increased levels of non-structural carbohydrates as the major trigger. The second hypothesis (the ‘amino acid diversion model of secondary plant metabolism’) states that increased accumulation of phenolics stems from a decreased use of a common precursor (phenylalanine or tyrosine) for protein synthesis. Current experimental evidence, though still fairly limited, supports the second hypothesis, but further testing is required before the first model n be rejected. So far, there is very little evidence for a direct effect of atmospheric CO2 on the concentration of secondary compounds in higher plants. However, there are likely to be indirect effects, due to a stronger limitation by the nitrogen supply in plants whose growth has been promoted by atmospheric CO2. It is concluded that it is very likely that phenolic compounds accumulate to a greater extent in plants exposed to elevated CO2, due to a greater limitation of nutrients, rather than as a direct effect of elevated CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J. D. & Melillo, J. M. 1982. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Can. J. Bot. 60: 2263–2269.

    Article  CAS  Google Scholar 

  • Akey, D. H. & Kimball, B. A. 1989. Growth and development of the beet armyworm on cotton grown in enriched carbon dioxide atmosphere. Southwestern Entomol. 14: 255–260.

    Google Scholar 

  • Akey, D. H., Kimball, B. A. & Mauney, J. R. 1988. Growth and development of the Pink Bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae), on bolls of cotton grown in enriched carbon dioxide atmosphere. Envir. Entomol. 17: 452–455.

    Google Scholar 

  • Baas, W. J. 1989. Secondary plant compounds, their ecological significance and consequences for the carbon budget. Introduction of the carbon/nutrient cycle theory. In: Lambers, H., Cambridge, M. L., Konings, H. & Pons, T. L. (eds), Causes and consequences of variation in growth rate and productivity of higher plants, pp. 313–340. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Baldwin, I. T., Olson, R. K. & Reiners, W. A. 1983. Proteinbinding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biol. Biochem. 15: 419–423.

    Article  CAS  Google Scholar 

  • Berendse, F., Berg, B. & Bosatta, E. 1987. The effect of lignin and nitrogen on the decomposition of litter in nutrient-poor ecosystems: a theoretical approach. Can. J. Bot. 65: 1116–1120.

    Article  CAS  Google Scholar 

  • Berg, B. & Staaf, H. 1981. Leaching, accumulation and release of nitrogen in decomposing forest litter. Ecol. Bull. 33: 163–178.

    CAS  Google Scholar 

  • Brown, S. A. 1981. Coumarins. In: Conn, E. E. (ed), The Biochemistry of Plants, Vol. 7, pp. 269–300. Academic Press, New York.

    Google Scholar 

  • Bryant J. P., Chapin, F. S. & Klein, D. R. 1983. Carbon/ nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–368.

    Article  CAS  Google Scholar 

  • Bryant, J. P., Chapin, F. S., Reichardt, P. B. & Clausen, T. P. 1987. Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon/nutrient balance. Oecologia 72: 510–514.

    Article  Google Scholar 

  • Chou, C. -H & Kuo, Y. -L. 1986. Allelopathic research of subtropical vegetation in Taiwan. Alleopathic exclusion of understorey by Leucaena leucophylla (Lam.) de Wit. J. Chem. Ecol. 12: 1431–1448.

    Article  Google Scholar 

  • Coley, P. D. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs 53: 209–233.

    Article  Google Scholar 

  • Coley, P. D. 1986. Costs and benefits of defense by tannins in a neotropical tree. Oecologia 70: 238–241.

    Article  Google Scholar 

  • Couteaux, M. -M., Mousseau, M., Célérier, M. -L. & Bottner, P. 1991. Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos 61: 54–64.

    Article  Google Scholar 

  • Curtis, P. S., Drake, B. G., Leadley, P. W., Arp, W. J. & Whigham, D. F. 1989a. Growth and senescence in plant communities exposed to elevated CO2 on an estuarine marsh. Oecologia 78: 20–26.

    Article  Google Scholar 

  • Curtis, P. S., Drake, B. G. & Whigham, D. F. 1989b. Nitrogen and carbon dynamics in C3 and C4 estuarine marsh plants grown under elevated CO2 in situ. Oecologia 78: 297–301.

    Article  Google Scholar 

  • Dicke, M. & Sabelis, M. W. 1989. Does it pay to advertize for body guards? In: Lambers, H., Cambridge, M. L., Konings, H. & Pons, T. L. (eds), Causes and consequences of variation in growth rate and productivity of higher plants, pp. 341–358. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Fajer, E. D. 1989. The effect of enriched CO2 atmospheres on plant-insect herbivore interactions: growth responses of larvae of the specialist butterfly, Junonia coenia (Lepidoptera: Nymphalidae). Oecologia 81: 514–520.

    Article  Google Scholar 

  • Fajer, E. D., Bowers, M. D. & Bazzaz, F. A. 1989. The effect of enriched carbon dioxide atmospheres on plant/insect herbivore interactions. Science 243: 1198–1200.

    Article  PubMed  CAS  Google Scholar 

  • Fajer, E. D., Bowers, M. D. and Bazzaz, F. A. 1989. The effects of enriched CO2 atmospheres on the buckeye butterfly, Junonia coenia. Ecology 72: 751–754.

    Article  Google Scholar 

  • Fox, R. H., Myers, R. J. K. & Vallis, I. 1990. The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant Soil 129: 251–259.

    CAS  Google Scholar 

  • Gershenzon, J. 1984. Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Timmermann, B. N., Steelink, C. & Loewus, F. A. (eds), Phytochemical Adaptations to Stress, Rec. Adv. Phytochem., Vol. 18, pp. 273–320. Plenum, New York.

    Google Scholar 

  • Glyphis, J. P. & Puttick,m G. M. 1989. Phenolics, nutrition and insect herbivory in some garrigue and maquis plant species. Oecologia 78: 259–263.

    Article  Google Scholar 

  • Grisebach, H. 1981. Lignins. In: Conn, E. E. (ed). The Biochemistry of Plants, Vol. 7, pp. 457–478. Academic Press, New York.

    Google Scholar 

  • Gross, G. G. 1981. Penolic acids. In: Conn, E. E. (ed). The Biochemistry of Plants, Vol. 7, pp. 301–316. Academic Press, New York.

    Google Scholar 

  • Harborne, J. B. 1988. Introduction to Ecological Biochemistry. Academic Press, London

    Google Scholar 

  • Haslam, E. 1981. Vegetable tannins. In: Conn, E. E. (ed). The Biochemistry of Plants, Vol. 7, pp. 527–556. Academic Press, New York.

    Google Scholar 

  • Haslam, E. 1988. Plant polyphenols (syn. vegetable tannins) and chemical defense -a reappraisal. J. Chem. Ecol. 14: 1789–1805.

    Article  CAS  Google Scholar 

  • Howe, H. F. & Westley, L. C. 1988. Ecological relationships of Plants and Animals. Oxford University Press, New York

    Google Scholar 

  • Johnson, N. D., Brain, S. A. & Ehrlich, P. R. 1985. The role of leaf resin in the interaction between Eriodictyon californicum (Hydrophyllaceae) and its herbivore, Trirhabda diducta (Crysomelida) Oecologia 66: 106–110.

    Article  Google Scholar 

  • Johnson, R. H. & Lincoln, D. E. 1990. Sagebrush and grasss-hopper responses to atmospheric carbon dioxide concentration. Oecologia 84: 103–110.

    Article  Google Scholar 

  • Kimmerer, T. W. & Potter, D. A. 1987. Nutritional quality of specific leaf tissues and selective feeding by a specialist leafminer. Oecologia 71: 548–551.

    Article  Google Scholar 

  • Krause, J. & Reznik, H. 1972. Die Einfluss der Phosphat-und Nitratversorgung auf den Phenylpropanoidstoffwechsel in Buchweizenblättern (Fagopyrum esculentum Moench). Z. Pflanzenphysiol. 68: 134–143.

    CAS  Google Scholar 

  • Kuiters, A. T. 1990. Role of phenolic substances from decomposing forest litter in plant-soil interactions. Acta Bot. Neerl. 39: 329–348.

    CAS  Google Scholar 

  • Laine, K. M. & Henttonen, H. 1987. Phenolics/nitrogen ratios in the blueberry Vaccinium myrtillus in relation to temperature and microtine density in Finnish Lapland. Oikos 50: 389–395.

    Article  Google Scholar 

  • Lamb, D. 1975. Patterns of nitrogen mineralization in the forest floor of stands of Pinus radiata on different soils. J. Ecol. 63: 615–625.

    Article  Google Scholar 

  • Lambers, H. & Poorter, H. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Adv. Ecol. Res. 22, in press

    Google Scholar 

  • Lambers, H. & Rychter, A. 1989. The biochemical backround of variation in respiration rate: respiratory pathways and chemical composition. In: Lambers, H., Cambridge, M. L., Konings, H. & Pons, T. L. (eds), Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants, pp. 199–225. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Larsson, S., Wirén, A., Lundgren, L. & Ericsson, T. 1986. Effects of light and nutrient stress on leaf phenolic chemistry in Salix dasyclados and susceptibility to Galerucella lineola. Oikos 47: 205–210.

    Article  CAS  Google Scholar 

  • Lewis, N. G. & Yamomoto, E. 1990. Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Mol. Biol. 41: 455–496.

    Article  CAS  Google Scholar 

  • Lincoln, D. E. 1980. Leaf resin flavonoids of Diplacus aurantiacus. Biochem. Syst. Ecol., 8, 397–400

    Article  CAS  Google Scholar 

  • Lincoln, D. E. & Couvet, D. 1989. The effect of carbon supply on allelochemicals and caterpillar consumption of peppermint. Oecologia 78: 112–114.

    Article  Google Scholar 

  • Lincoln, D. E., Newton, F. S., Ehrlich, P. R., & Williams, K. S. 1982. Coevolution of the checkerspot butterfly Euphydras chalcedona and its larval food plant Diplacus auranticus: Larval response to protein and leaf resin. Oecologia 52: 216–223.

    Article  Google Scholar 

  • Lincoln, D. E., Sionit, N. & Strain, B. R. 1984. Growth and feeding response of Pseudoplusia includens to host plants grown in controlled carbon dioxide atmospheres. Environ. Entomol. 13: 1527–1530.

    CAS  Google Scholar 

  • Lincoln, D. E., Couvet, D. & Sionit, N. 1986. Responses of an insect herbivore to host plants grown in carbon dioxide enriched atmospheres. Oecologia 69: 556–560.

    Article  Google Scholar 

  • Lindroth, R. L. 1989. Biochemical detoxication: mechanism of different tiger swallowtail tolerance to phenolic glycosides. Oecologia 81: 219–224.

    Google Scholar 

  • Lindroth, R. L. & Batzli, G. O. 1984. Plant phenolics as chemical defenses: effects of natural phenolics on survival and growth of prairie voles (Microtus ochrogaster). J. Chem. Ecol. 10: 229–244.

    Article  CAS  Google Scholar 

  • Lindroth, R. L. & Peterson, S. S. 1988. Effects of plant phenols on performance of southern aemyworm larvae. Oecologia 75: 185–189.

    Article  Google Scholar 

  • Maby, T. J. & Ulubelen, A. 1980. Chemistry and utilization of phenylpropanoids including flavonoids, coumarins and lignans. Agric. Food Chemistry 28: 188–196.

    Article  Google Scholar 

  • Manuwoto, S. & Scriber, J. M. 1986. Effects of hydrolyzable tannin on growth and development of two species of polyphagous lepidoptera: Spodoptera eridiana and Callosamia prometha. Oecologia 69: 225–230.

    Article  Google Scholar 

  • Margna, U. 1977. Control at the level of substrate supply -An alternative in the regulation of phenylpropanoid accu-mulation in plant cells. Phytochemistry 16: 419–426.

    Article  CAS  Google Scholar 

  • Margna, U., Margna, E. & Vainjärv, T. 1989. Influence of nitrogen nutrition on the utilization of L-phenylalanine for building flavonoids in buckwheat seedlings. J. Plant Physiol. 134: 697–702.

    Article  CAS  Google Scholar 

  • Markham, K. R. 1971. A chemotaxonomic approach to he selection of opossum resistant willows and poplars for use in soil conservation. New Zealand J. Science 14: 179–186.

    CAS  Google Scholar 

  • McKey, D. 1979. The distribution of secondary compounds within plants. In: Rosenthal, G. A. & Janzen, D. H. (eds), Herbivores, their Interaction with SAecondary Plant Me-tabolites, pp.56–134. Academic Press, New York

    Google Scholar 

  • Mihaliak, C. A. & Lincoln, D. E. 1989. Changes in leaf mono-and sesquiterpene metabolism with nitrate-availability and leaf age in Heterotheca subaxillaris. J. Chem. Ecol. 15: 1579–1588.

    Article  CAS  Google Scholar 

  • Nicolai, V. 1988. Phenolic and mineral content of leaves influences decomposition in European forest ecosystems. Oecologia 75: 575–579.

    Article  Google Scholar 

  • Phillips, R. & Henshaw, G. G. 1977. The regulation of synthesis of phenolics in stationary cell cultures od Acer pseudoplatanus L. J. Exp. Bot. 28: 785–794.

    Article  CAS  Google Scholar 

  • Pirie, A. & Mullins, M. G. 1976. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissue treated with sucrose, nitrate, and abscisic acid. Plant Physiol. 58: 468–472.

    Article  PubMed  CAS  Google Scholar 

  • Poorter, H. 1991. Interspecific Variation in the Relative Growth Rate of Plants: The Underlying Mechanisms. PhD Thesis, Univ. UtrechtRees,S. B. & Harborne, J. B. 1985. The role of sesquiterpene lactones and phenolics in the chemical defence of the chicory plant. Phytochemistry 10: 2225–2231.

    Google Scholar 

  • Rhoades, D. F. 1977. Integrated antiherbivore, antidesiccant and ultraviolet screening properties of creosotebush resin. Bioch. Syst. Ecol. 5: 281–290.

    Article  CAS  Google Scholar 

  • Stuhlfauth, T. & Fock, H. P. 1990. Effects of whole season CO2 enrichment on the cultivation of a medicinal plant, Digitalis lanata. J. Agron. Crop. Sci. 164: 168–173.

    Article  CAS  Google Scholar 

  • Taper, M. L. & Case, T. J. 1987. Interactions between oak tannins and parasite community structure: Unexpected benefits of tannins to cynipid gall-wasps. Oecologia 71, 254–261.

    Article  Google Scholar 

  • Waring, R. H., McDonald, A. J. S., Larsson, S., Ericsson, T., Wiren, A., Arwidsson, E., Ericsson, A. & Lohammar, T. 1985. Differences in chemical composition of plants grown at constant relative growth rates with stable mineral nutrition. Oecologia 66: 157–160.

    Article  Google Scholar 

  • Waterman, P. G. & McKey, D. 1989. Herbivory and secondary compounds in rain-forest plants. In: Lieth, H. & Werger, M. J. A. (eds), Tropical Rain Forest Ecosystems, pp. 513–536. Elsevier, Amsterdam.

    Google Scholar 

  • Williams, W. E., Garbutt, K., Bazzaz, F. A. & Vitousek, P. M. 1986. The response of plants to elevated CO2. IV. Two deciduous-forest communities. Oecologia 69: 454–459.

    Article  Google Scholar 

  • Wong, S. -C. 1979. Elevated atmospheric partial pressure of CO2 and plant growth. I. Interactions of nitrogen nutrition and photo synthetic capacity in C3 and C4 plants. Oecologia 44: 68–74.

    Article  Google Scholar 

  • Wong, S. -C. 1990. Elevated atmospheric partial pressure of CO2 and plant growth. II. Non-structural carbohydrate content in cotton plants and its effect on growth parameters. Photosynthesis Research 23: 171–180.

    Article  CAS  Google Scholar 

  • Yelle, S., Beeson, R. C. Jr., Trudel, M. J. & Gosselin, A. 1989. Acclimation of two tomato species to high atmospheric CO2.I. Sugar and starch concentrations. Plant Physiol. 90: 1465–1472.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Rozema H. Lambers S. C. Van de Geijn M. L. Cambridge

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lambers, H. (1993). Rising CO2, secondary plant metabolism, plant-herbivore interactions and litter decomposition. In: Rozema, J., Lambers, H., Van de Geijn, S.C., Cambridge, M.L. (eds) CO2 and biosphere. Advances in vegetation science, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1797-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1797-5_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4791-3

  • Online ISBN: 978-94-011-1797-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics