1.

Tcheremissine F.G. (1970) Solution of the kinetic Boltzmann equation in the problem of heat transfer between parallel infinite places. *Izv. AN SSSR. Mechanika zhidkosti i gaza*, no.**5**, pp. 185–188.

2.

Limar E.F., Sedova E.S., Janitskii V.E. (1979) Comparison of two solution of the problem on heat transfer in a rarefied gas, *Numerical methods in rarefied gas dynamics*. Computing Center of USSR Academy of Sciences. Moscow. Vol. no. **4**, pp.117–129.

3.

Ohwada T. (1996) Heat flow and density and temperature distibution in a rarefied gas between parallel plates with different temperatures: Finite difference analysis of the nonlinear Boltzman equation for hard-sphere molecules,

*Physics of Fluids*, Vol. no.

**8**, pp. 217–234.

MathSciNetCrossRef4.

Ohwada T. (1997) Investigation of heat transfer problem of a rarefied gas between parallel plates with different temperatures, *Rarefied Gas Dynamics*, ed.C. Shen, Peking University, pp. 327–332.

5.

Bird G. (1994) *Molecular gas dynamics and the direct simulation of gas flows*. Clarendon press, Oxford.

6.

Liu S, Lees T. (1964) Moment method for heat flow problems *Physics of Fluids*, Vol. no. **24**, pp. 319–327.

7.

Mausbach P., Beylich A.E. (1985) Numerical solution of the Boltzmann equation for one-dimensional problems in binary mixtures *Rarefied Gas Dynamics*, eds. O. Belotserkovskii et al., Vol. no. **1**, pp.285–292.

8.

Frezzotti A. and Pavani R. (1993) Direct numerical solution of the Boltzmann equation on a parallel computer,

*Computers and Fluids*, Vol. no.

**22**., pp. 1–8.

MATHCrossRef9.

Tcheremissine F.G. (1972) Rarefied gas motion between infinite planeparallel emitting and condensing surfaces, *Izv. USSR Acad.Sci., Mechanica zhidkosti i gaza*, no.**2**, pp. 176–178.

10.

Yen S.M. (1970) Kinetic theory approach to one-dimensional condensation-evaporation problem, *Rarefied Gas Dynamics*, Vol. no. **2**, pp. 853–860.

11.

Yen S.M., Ytrehus T. (1981) Treatment of the nonequilibrium vapor motion near an evaporating interphase boundary,

*Chem. Engng. Communs*, Vol. no.

**10**, pp. 357–367.

CrossRef12.

Aristov V.V., Ivanov. S., Tcheremissine F.G. (1991) Solution of the problem on one-dimensinal heat transfer in a rarefied gas by two methods, *USSR J. Comp.Math. Math.Phys.*, Vol. no. **31**, pp. 623–626.

13.

Ivanov M.S., Rogasinskii S.V. (1991) Theoretical analysis of traditional and modern schemes of the DSMC method, *Rarefied Gas Dynamics*, A. Beylich ed. VCH, Weinheim, pp. 629–642.

14.

Belotserkovskii O.M, Yanitskii V.E. (1975) Statistical method of particles in cells. I., *USSR J. Comput. Maths. Math. Phys.*, Vol. no. **15**, pp. 6–23.

15.

Limar E.F. (1985) Numerical solution of the Boltzmann equation by the integral approximation method, *Rarefied Gas Dynamics*. O. Belotserkovskii et al. eds., Plenum Press, New York, Vol. no.**1**, pp. 277–283.

16.

Kogan M.N. (1969) *Rarefied gas dynamics*. Plenum Press, New York.

17.

Cercignani C. (1988)

*The Boltzmann equation and its application*. Springer-Verlag, Berlin.

CrossRef18.

Tamm I.E. (1965) On the shock wave width of a strong intensity, *Proc. of Lebedev’s Physical Institute*, Vol. no. **29**, pp.239–249.

19.

Mott-Smith H.M. (1951) The solution of the Boltzmann equation for a shock wave,

*Phys.Rev.*, Vol. no.

**82**,, pp. 885–892.

MathSciNetADSMATHCrossRef20.

Schmidt B. (1969) Electrom beam density measurements in shock waves in argon,

*J.Fluid Mech.*, Vol. no.

**39**, pp. 361–373.

ADSCrossRef21.

Alsmeyer H. (1976) Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam.

*J.Fluid.Mech.*, Vol. no.

**74**, pp. 497–513.

ADSCrossRef22.

Liepman H.W., Narasimha R., Shachine M.T. (1962) Structure of a plane shock layer

*Physics of Fluids*, Vol. no.

**5**, pp. 1313–1324.

ADSCrossRef23.

Zhuk V.I., Rykov V.I., Shakhov E.V. (1973) Kinetic models and the problem on a shock wave structure *Izv. Acad. Nauk SSSR. Mechanika Zhidkosti i gasa (transl. in Fluid Dynamics)*, no.**4**, pp. 135–141.

24.

Nanbu K., Watanabe Y. (1984) Analysis of the internal structure of shock waves by means of the exact direct-simulation method. *Rep. Inst. High Speed Mech.*, Tohoku University, Vol. no. **48**, pp. 1–75.

25.

Hicks B.L., Yen S.M., Reilly B.J. (1972) The internal structures of shock waves,

*J. Fluid Mech.*, Vol. no.

**53**, pp.85–111.

ADSMATHCrossRef26.

Yen S.M., Ng W. (1974) Shock wave structure and intermolecular collision laws,

*J. Fluid Mech.*, Vol.

**65**, pp. 127–144.

ADSMATHCrossRef27.

Theremissine F.G. (1970) Numerical solving the kinetic Boltzmann equation for one-dimensional steady gas flows, *USSR J.Comput. Maths. Math. Phys.*, Vol. no.**10**, pp. 654–665.

28.

Aristov V.V., Theremissine F.G. (1980) Conservative splitting method for solving the Boltzmann equation.

*USSR J. Comp. Math. Math.Phys.*, Vol. no.

**20**, pp. 208–225.

MATHCrossRef29.

Aristov V.V., Tcheremissine F.G. (1982) Shock wave structure in monatomic gas at power interaction potentials, *Izv. Acad. Nauk SSSR. Mechanika Zhidkosti i gasa (transl. in Fluid Dynamics)*, no.**2**, pp. 179–183.

30.

Tan Z., Chen Y.-K., Varghese P.L. and Howell J.R. (1989) A new numerical strategy to evaluate the collision integral of the Boltzmann equation, *Rarefied Gas Dynamics, Progr. in Aeronaut. and Astronaut*. pp. 359–373.

31.

Ohwada T. (1993) Structure of normal shock wave: direct numerical analysis of the Boltzman equation for hard-sphere molecules,

*Physics of Fluids A*, Vol. no.

**5**, pp. 217–234.

MathSciNetADSMATHCrossRef32.

Ohwada T. (1994) Numerical analysis of normal shock waves on the basis of the Boltzman equation for hard-sphere molecules, *Rarefied Gas Dynamics Progress in Astronaut. and Aeronaut. Washington*, Vol. no. **159**, pp.482–488.

33.

Buet C. (1994) Resolution deterministe de l’equation de Boltzmann. Commisariat a l’energie atomique. Centre d’etudes de Limeil-Valenton. Department de Mathematiques Appliquees, CEA-N-2747.

34.

Holtz T. and Muntz E. (1983) Molecular velocity distribution function measurements in an argon normal shock wave at Mach number 7.

*Physics of Fluids*, Vol. no.

**26**, 2425–2436.

ADSCrossRef35.

Popov S.P. and Tcheremissine F.G. (1999) Conservative method of solving the Boltzmann equation for central-symmetric interaction potentials, *J.Comp. Math. Math. Phys.*, Vol. no. **39**, pp.163–176.

36.

Raines A.A. (1991) Numerical solution of the Boltzmann equation for the one dimensional problem in binary gas mixture, *Rarefied Gas Dynamics* A. Beylich ed., VHC, Weinheim, pp. 328–331.

37.

Shcheprov A.V. (1995) The numerical investigation of two-component gas mixture flows in the spherically symmetric gravitational field *Raref. Gas Dynam*, Harvey and Lord eds., Oxford Univ. Press. Vol. no.**2**, pp. 1204–1208.

38.

Scheprov A.V. (1995) A numerical analysis of molecular motion in a spherically symmetric gravitational field, *Comp. Maths Math. Phys.*, Vol. no.**35**, pp. 1505–1515.

39.

Shakhov E.V. (1971) Steady flow of a rarefied gas from a spherical source or sink. *Izv. Acad. Nauk SSSR. Mechanika Zhidkosti i gasa (transl. in Fluid Dynamics)*, no.**2**, pp. 58–66.

40.

Zhuk V.I. (1977) The solution of the kinetic equation for a gas in the gravitational field of planets,

*Dokl. Akad. Nauk SSSR*, Vol. no.

**233**, pp. 325–328.

ADS41.

Zhuk V.I. and Shakhov E.V. (1973) Dispersion of a plane layer of rarefied gas into a vacuum.

*USSR J. Comp. Maths Math. Phys.*, Vol. no.

**13**, pp. 984–989.

MATH42.

Sone Y. and Sugimoto H. (1992) Numerical analysis of steady flows of a gas evaporating from its cylindrical condensed phase on the basis of kinetic theory,

*Phys. Fluids A*, Vol. no.

**4**, pp. 419–440.

ADSCrossRef43.

Sone Y. and Sugimoto H. (1993) Kinetic theory analysis of steady evaporating flows from a spherical condensed phase into a vacuum.

*Phys. Fluids A*, Vol. no.

**5**, pp. 1491–1511.

ADSMATHCrossRef44.

Opik E.J. and Singer S.F. (1961) Distribution of density in a planetary exosphere.

*Phys. Fluids.*, 1961, Vol.

**4**, pp. 221–233.

MathSciNetADSCrossRef45.

Aamodt R.E. and Case K.M. (1962) Density in a simple model of the exosphere,

*Phys. Fluids*, Vol. no.

**5**, pp. 1019–1021.

ADSMATHCrossRef46.

Chamberlain J.W. (1963) Planetary coronae and atmospheric evaporation,

*Planetary and Space Sci.*, Vol. no.

**11**, pp. 901–960.

ADSCrossRef47.

Scheprov A.V. (1996) A numerical investigation of the recondensation of a mixture of rarefied gases in a spherically symmetrical force field, *Comp. Maths Math. Phys.*, Vol. no. **36**, pp. 81–85.