Skip to main content

Advances in Modeling and Inference for Environmental Processes with Nonstationary Spatial Covariance

  • Conference paper

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 11))

Abstract

Modeling of the spatial dependence structure of environmental processes is fundamental to almost all statistical analyses of data that are sampled spatially. These analyses address tasks such as spatial estimation (kriging) and monitoring network design, as well as the basic scientific characterization of the second order properties of these processes. Prior to 1990, the lack of general models for the spatial covariance function led to almost exclusive reliance on stationary models of the form cov(Z(x), Z(y)) = C(x-y) where Z (x): ∈ D denotes a process defined over a spatial domain DR d. However, it is now widely recognized that most, if not all, spatia-temporal environmental processes (and many spatial processes without a temporal aspect) manifest spatially nonstationary or heterogeneous covariance structure when considered over a sufficiently large spatial range.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bookstein, F.L. (1989). Principal warps — Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis 11, 567–585.

    Article  MATH  Google Scholar 

  • Buell, E.C. (1978). The number of significant proper functions of two-dimensional fields. Journal of Applied Meteorology 17, 717–722.

    Article  Google Scholar 

  • Cohen, A., and Jones, R.H. (1969). Regression on a random field. Journal of the American Statististical Association 64, 1172–1182.

    Article  Google Scholar 

  • Damian, D., Sampson, P.D., and Guttorp, P. (2000). Bayesian estimation of semi parametric non-stationary spatial covariance structures. Environmetrics, in press.

    Google Scholar 

  • Das, B. (2000). Global Covariance Modeling: A Deformation Approach to Anisotropy. Ph.D. dissertation, Department of Statistics, University of Washington (http://www.cgd.ucar.edu/stats/manuscripts/das.ps)/stats/manuscripts/das.ps.

  • Fuentes, M. (2000). A new high frequency kriging approach for nonstationary environmental processes. Environmetrics, in press.

    Google Scholar 

  • Gneiting, T., and Schlather, M. (2001).Space-time covariance models. In: Encyclopedia of Environmetrics, New York, Wiley, to appear.

    Google Scholar 

  • Guillot, G., Senoussi, R., and Monestiez, P. (2001). Definite positive covariance estimator for nonstationary random fields. In: GeoENV 2000: Third European Conference on Geostatistics for Environmental Applications, P. Monestiez, D. Allard, and R. Froidevaux, eds., Kluwer, Dordrecht, to appear.

    Google Scholar 

  • Guttorp, P., and Sampson, P.D. (1994). Methods for estimating heterogeneous spatial covariance functions with environmental applications. In: Handbook of Statistics, Vo1.12, G.P. Patil and C.R. Rao, eds., Elsevier Science, New York, pp.661–689.

    Google Scholar 

  • Haas, T.C. (1990a). Kriging and automated variogram modeling within a moving window. Atmospheric Environment 24A, 1759–1769.

    Google Scholar 

  • Haas, T.C. (1990b). Lognormal and moving window methods of estimating acid deposition. Journal of the American Statistical Association 85, 950–963.

    Article  Google Scholar 

  • Haas, T.C. (1995). Local prediction of a spatio-temporal process with an application to wet sulfate deposition. Journal of the American Statistical Association 90, 1189–1199.

    Article  MATH  Google Scholar 

  • Haslett, J., and Raftery, A.E. (1989). Space-time modelling with long-memory dependence: Assessing Ireland’s wind resource (with discussion). Journal of the Royal Statistical Society, Ser.C 38, 1–50.

    Google Scholar 

  • Higdon, D. (1998). A process-convolution approach to modeling temperatures in the North Atlantic Ocean, Journal of Environmental and Ecological Statistics 5, 173–190.

    Article  Google Scholar 

  • Higdon, D.M., Swall, J., and Kern, J. (1999). Non-stationary spatial modeling. In: Bayesian Statistics 6, J.M. Bernardo, J.O. Berger, A.P. David, and A.F.M. Smith, eds., Oxford University Press, Oxford, pp.761–768.

    Google Scholar 

  • Holland, D., Saltzman, N., Cox, L., and Nychka, D. (1998). Spatial prediction of sulfur dioxide in the eastern United States. In: GeoENV II: Geostatistics for Environmental Applications. J. Gomez-Hernandes, A. Soares, and R. Froidevaux, eds. Kluwer, Dordrecht, pp.65–76.

    Google Scholar 

  • Hughes-Oliver, J.M., Gonsalez-Faria, G., Lu, JC., and Chen, D. (1998). Parametric nonstationary spatial correlation models. Statistics and Probability Letters 40, 267–278.

    Article  MATH  Google Scholar 

  • Hughes-Oliver, J.M., and Gonzalez-Farias, G. (1999). Parametric covariance models for shock-induced stochastic processes. Journal of Statistical Planning and Inference 77, 51–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Iovleff, S., and Perrin, O. (2000). Estimating a non-stationary spatial structure using simulated annealing, (http://www.math.chalmers.se/olivier/paper/recuit.ps)/olivier/paper/recuit.ps.

  • Kent, J.T., and Mardia, KV. (1994). Link between kriging and thin plate splines. In: Probability, Statistics and Optimization. F.P. Kelly, ed. New York, Wiley, pp.325–339.

    Google Scholar 

  • Loader, C., and Switzer, P. (1992). Spatial covariance estimation for monitoring data. In: Statistics in Environmental and Earth Sciences, A. Walden and P. Guttorp, eds. Edward Arnold, London, pp. 52–70.

    Google Scholar 

  • Mardia, KV., and Goodall, C.R. (1992). Spatial temporal analysis of multivariate environmental monitoring data. In: Multivariate Environmental Statistics 6. N.K Bose, G.P. Patil, and C.R. Roo, eds. North Holland, New York, pp.347–385.

    Google Scholar 

  • Mardia, KV., Kent, J.T., and Walder, A.N. (1991). Statistical shape models in image analysis. In: Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface. E.M. Keramidas, ed., Interface Foundation of America, Fairfax, VA., pp.550–557.

    Google Scholar 

  • Meiring, W., Monestiez, P., Sampson, P.D., and Guttorp, P. (1997). Developments in the modelling of nonstationary spatial covariance structure from space-time monitoring data. In: Geostatistics Wallongong ‘96, E.Y. Baafi and N. Schofield, eds., Kluwer, Dordrecht, pp.162–173.

    Google Scholar 

  • Nott, D., and Dunsmuir, W.T.M. (1998). Analysis of spatial covariance structure for Sydney wind patterns. Report S98-6, Department of Statistics, University of New South Wales, Sydney, Australia (http://www.maths.unsw.EDU.AU/statistics/preprints/s98-6.pdf)/statistics/preprints/s98-6.pdf.

    Google Scholar 

  • Nychka, D., and Saltzman, N. (1998). Design of air quality networks. In: Case Studies in Environmental Statistics. D. Nychka, W. Piegorsch, and L. Cox, eds. Springer-Verlag, New York, pp.51–76.

    Chapter  Google Scholar 

  • Nychka, D., Wikle, C., and Royle, J.A. (2000). Large spatial prediction problems and nonstationary random fields. Geophysical Statistics Project, National Center for Atmospheric Research, Bolder, CO, research report (http://www.cgd.ucar.edu/stats/manuscripts/krig5.ps)/stats/manuscripts/krig5.ps.

  • Obled, C., and Creutin, J.D. (1986). Some developments in the use of empirical orthogonal functions for mapping meteorological fields. Journal of Applied Meteorology 25, 1189–1204.

    Article  Google Scholar 

  • Oehlert, G.W. (1993). Regional trends in sulfate wet deposition. Journal of the American Statistical Association 88, 390–399.

    Article  Google Scholar 

  • Perrin, O., and Meiring, W. (1999). Identifiability for non-stationary spatial structure. Journal of Applied Probability 36, 1244–1250.

    Article  MathSciNet  MATH  Google Scholar 

  • Perrin, O., and Monestiez, P. (1998). Modeling of non-stationary spatial covariance structure by parametric radial basis deformations. In: GeoENV II: Geostatistics for Environmental Applications. J. Gomez-Hernandez, A. Soares, and R. Froidevaux, eds. Kluwer, Dordrecht, pp. 175–186.

    Google Scholar 

  • Perrin, O., and Senoussi, R. (2000). Reducing non-stationary random fields to stationarity and isotropy using a space deformation. Statistics and Probability Letters 48, 23–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Preisendorfer, R.W. (1988). Principal component analysis in meteorology and oceanography. Elsevier, Amsterdam.

    Google Scholar 

  • Sampson, P.D., and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. Journal of the American Statistical Association 87, 108 119.

    Google Scholar 

  • Schmidt, A.M., and O’Hagan, A. (2000). Bayesian inference for nonstationary spatial covariance structure via spat ial deformations. Research Report No.498/00, Department of Statistics, University of Sheffield (http://www.shef.ac.uk/stlao/ps/spatial.ps)/stlao/ps/spatial.ps.

  • Wikle, C.K, and Cressie, N. (1999). A dimension-reduction approach to space-time Kalman filtering. Biometrika 86, 815–829.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Sampson, P.D., Damian, D., Guttorp, P. (2001). Advances in Modeling and Inference for Environmental Processes with Nonstationary Spatial Covariance. In: Monestiez, P., Allard, D., Froidevaux, R. (eds) geoENV III — Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0810-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0810-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7107-6

  • Online ISBN: 978-94-010-0810-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics