Skip to main content

On the Contribution of Hydrogeology to Advances in Geostatistics

  • Conference paper
geoENV III — Geostatistics for Environmental Applications

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 11))

Abstract

The specificity of some problems of hydrogeology and the variety of their solutions have contributed to the development of new geostatistical methods. This contribution is illustrated by prominent examples of several types of approach: adaptations of kriging and conditional simulations to a direct modelling of hydraulic head; early solutons to the inverse problem; stochastic inversion of hydrogeologic data in the framework of a linearized flow equation; stochastic inversion in the general case by means of iterative solutions coupling numerical analysis and geostatistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Capilla, J.E., J. Rodrigo, and JJ. Gómez-Hernández (1999). Simulation of non-gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Mathemntical Geology, 31(7), 907–927.

    Article  Google Scholar 

  • Carrera, J., and S.P. Neuman (1986a). Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information. Water Resources Research, 22(2), 199–210.

    Article  Google Scholar 

  • Carrera, J., and S.P. Neuman (1986b). Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms. Water Resources Research, 22(2), 211–227.

    Article  Google Scholar 

  • Chilès, J.P. (1976). How to adapt kriging to non-classical problems: three case studies. In Advanced Geostatistics in the Mining Industry, M. Guarascio, M. David, and C. Huijbregts, eds. Reidel, Dordrecht, Holland, 69–89.

    Chapter  Google Scholar 

  • Chilès, J.P. (1992). The use of external-drift kriging for designing a piezometric observation network. In Geostatistical Methods: Recent Developments and Applications in Surface and Subsurface Hydrology, A. Bardossy (Ed.). IHP-IV, UNESCO, Paris. 11–20.

    Google Scholar 

  • Chilès, J.P., and P. Delfiner (1999). Geostatistics: Modeling Spatial Uncertainty. Wiley, New York.

    Book  MATH  Google Scholar 

  • Chilès, J.P., and G. de Marsily (1993). Stochastic models of fracture systems and their use in flow and transport modeling. In Flow and Contaminant Transport in Fractured Rock, J. Bear, C.F. Tsang, and G. de Marsily, eds. Academic Press, San Diego, California, ch. 4.169–236.

    Chapter  Google Scholar 

  • Clifton, P.M., and S.P. Neuman (1982). Effects of kriging and inverse modeling on conditional simulation of the Avra Valley aquifer in southern Arizona. Water Resources Research, 18(4), 1215–1234.

    Article  Google Scholar 

  • Cooley, R.L. (1982). Incorporation of prior information on parameters into nonlinear regression groundwater flow models. 1. Theory. Water Resources Research, 18(4), 965–976.

    Article  Google Scholar 

  • Cooley, R.L. (1983). Incorporation of prior information on parameters into nonlinear regression groundwater flow models. 2. Applications. Water Resources Research, 19(3), 662–676.

    Article  Google Scholar 

  • Dagan, G. (1985). Stochastic modelling of groundwater by unconditional and conditional probabilities: the inverse problem. Water Resources Research, 21(1), 65–72.

    Article  MathSciNet  Google Scholar 

  • Dagan, G. (1989). Flow and Transport in Porous Formations. Springer. Berlin Heidelberg.

    Book  Google Scholar 

  • Delfiner, P., and J.P. Delhomme (1975). Optimum interpolation by kriging. In Display and Analysis of Spatial Data, J.C. Davis and M.J. McCullagh, eds. Wiley, London, 96–114.

    Google Scholar 

  • Delhomme, J.P. (1976). Applications de la théorie des variables régionalisées dans les sciences de l’eau. Doctoral thesis, Université Pierre & Marie Curie—Paris VI. Simplified text (1978, same title): Bulletin du B.R.G.M. (deuxième série), Section III, No.4, 341–375. English version: Kriging in the hydrosciences. Advances in Water Resources, 1(5), 251–266.

    Article  Google Scholar 

  • Delhomme, J.P. (1979a). Spatial variability and uncerta inty in groundwater flow parameters: A geostatistical approach. Water Resources Research, 15(2). 269–280.

    Article  Google Scholar 

  • Delhomme, J.P. (1979b). Kriging under boundary conditions. Presented at the American Geophysical Union Fall Meeting, San Francisco.December 1979.

    Google Scholar 

  • Delhomme, J.P., M. Besbes, and G. de Marsily (1975). Accuracy of estimation of the piezometric heads in an aquifer – Importance for the filling of a model. International Hydrogeology Symposium, Porto-Alegre, Brasil.

    Google Scholar 

  • Delhomme, J.P., M. Boucher, G. Meunier, and F. Jensen (1981). Apport de la géostatistique à la description des stockages de gaz en aquifère. Revue de l’Institut Français du Pétrole, 36(3), 309–327.

    Google Scholar 

  • Dettinger, M.D., and J.L. Wilson (1981). First order analysis of uncertainty in numerical models of groundwater flow. Part 1. Mathematical development. Water Resources Research, 17(1), 149–161.

    Article  Google Scholar 

  • Dong, A. (1990). Estimation géostatistique des phénomènes régis par des équations aux dérivées partielles. Doctoral thesis. E.N.S. des Mines de Paris.

    Google Scholar 

  • Emsellem, Y., and G. de Marsily (1971). An automatic solution for the inverse problem. Water Resources Research, 7(5), 1264–1283.

    Article  Google Scholar 

  • Gelhar, L.W. (1976). Effect of hydraulic conductivity variation on groundwater flow. In 2nd International Symposium on Stochastic Hydraulics, International Association for Hydraulic Resources, Lund, Sweden.

    Google Scholar 

  • Gelhar, L.W. (1993). Stochastic Subsurface Hydrology. Prentice-Hall. Englewood Cliffs. New Jersey.

    Google Scholar 

  • Gómez-Hemández, J.J., A. Sahuquillo, and J. Capilla (1997). Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data. 1. Theory. Journal of Hydrology, 203,162–174.

    Article  Google Scholar 

  • Gutjahr, A., B. Bullard, S. Hatch, and L. Hughson (1994). Joint conditional simulations and the spectral approach for flow modeling. Stochastic Hydrology and Hydraulics. 8, 79–108.

    Article  MATH  Google Scholar 

  • Hoeksema, R.J., and P.K. Kitanidis (1984). An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling. Warter Resources Research, 20(7), 1003–1020.

    Article  Google Scholar 

  • Hoeksema, R.J., and P.K. Kitanidis (1985). Comparison of Gaussian conditional mean and kriging estimation in the geostatistical solution of the inverse problem. Water Resources Research. 21(6), 825–836.

    Article  Google Scholar 

  • Journel, A.G. (1974). Simularions conditionnelles: Théorie et pratique. Doctoral thesis. Université de Nancy-I, France.

    Google Scholar 

  • Kitanidis, P.K., and E.G. Vomvoris (1983). A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations. Water Resources Research, 19(3), 677–690.

    Article  Google Scholar 

  • LaVenue, A.M. (1998). Sur une nouvelle méthode de points pilotes en problème inverse en hydrogéologie engendrant un ensemble de simularions conditionnelles de champs de transmissivité. Doctoral thesis, E.N.S. des Mines de Paris.

    Google Scholar 

  • LaVenue, A.M., and G. de Marsily (2001). Three-dimensional interference-test interpretation in a fraetured/unfracturcd aquifer using the pilot point inverse method. Water Resources Research, to appear.

    Google Scholar 

  • LaVenue, A.M., B.S. RamaRao, G. de Marsily, and M.G. Marietta (1995). Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields. 2. Application. Water Resources Research, 31(3), 495–516.

    Article  Google Scholar 

  • Marsily, G. de (1978). De l’identification des systèmes hydrogéologiques. Doctoral thesis, Université Pierre & Marie Curie – Paris VI, Paris.

    Google Scholar 

  • Marsily, G. de, G. Lavedan, M. Boucher, and G. Fasanino (1984). Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model. In Geostatistics for Natural Resources Characterization, G. Verly, M. David, A.G. Journel, and A. Maréchal, eds. Reidel, Dordrecht, Holland, Part 2, 831–849.

    Google Scholar 

  • Marsily, G. de, J.P. Delhomme, F. Delay, and A. Buoro (1999). Regards sur 40 ans de problèmes inverses en hydrogéologie. Comptes Rendus de l’Académie des Sciences de Paris, Sciences de la Terre et des Planetes, t. 329, 73–87.

    Google Scholar 

  • Matheron, G. (1965). Les variables régionalisees et leur estimation. Une application de la théorie des fonctions aléatoires aux Sciences de la Nature. Masson. Paris.

    Google Scholar 

  • Matheron, G. (1967). Eléments pour une théorie des milieux poreux. Masson, Paris.

    Google Scholar 

  • Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5, 439–468.

    Article  MathSciNet  MATH  Google Scholar 

  • Mizell, S.A., A.L. Gutjahr, and L.W. Gelhar (1982). Stochastic analysis of spatial variability in twodimensional steady groundwater flow assuming stationary and nonstationary heads. Water Resources Reasearch, 18(4), 1053–1067.

    Article  Google Scholar 

  • Neuman, S.P. (1973). Calibration of distributed parameter groundwater flow models viewed as multiple objective decision process under uncertainty. Water Resources Research, 9(4), 1006–1021.

    Article  Google Scholar 

  • Neuman, S.P. (1980). A statistical approach to the inverse problem of aquifer hydrology. 3. Improved solution method and added perspective. Water Resources Research, 16(2), 331–346.

    Article  Google Scholar 

  • RamaRao, B.S., A.M. LaVenue, G. de Marsily, and M.G. Marietta (1995). Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields. 1. Theory and computational experiments. Warer Resources Research, 31(3), 475–493.

    Article  Google Scholar 

  • Renard, P., and G. de Marsily (1997). Calculating equivalent permeability: A review. Advances in Water Resources, 20(5-6), 253–278.

    Article  Google Scholar 

  • Roth, C. (1995). Contribution de la géosratistique à la résolution du problème inverse en hydrogéologie. Doctoral thesis, E.N.S. des Mines de Paris; Document du BRGM, No. 241, Bureau de Recherches Geologiques et Minières, Orléans, France.

    Google Scholar 

  • Roth, C., C. de Fouquet, J.P. Chilès, and G. Matheron (1997). Geostatistics applied to hydrogeology’s inverse problem: taking boundary conditions into account. In Geostatistics Wollongong ‘96, E.Y. Baafi and N.A. Schofield, eds. Kluwer, Dordrecht, Netherlands, Vol. 2,1085–1097.

    Chapter  Google Scholar 

  • Roth, C., J.P. Chilès, and C. de Fouquet (1998). Combining geostatistics and flow si, transmissivity. Advances in Water Resources, 21(7), 555–565.

    Article  Google Scholar 

  • Rubin, Y., and G. Dagan (1987). Stochastic identification of transmissivity and effective ngroundwater flow: 1. Theory. Water Resources Research, 23(7), 1185–1192.

    Article  Google Scholar 

  • Smith, L., and R.A. Freeze (l979a). Stochastic analysis of steady state groundwater flow domain. I. One-dimensional simulations. WaterResources Research, 15(3), 521–528.

    Article  Google Scholar 

  • Smith, L.. and R.A. Freeze (l979b). Stochastic analysis of steady state groundwater flow in domain. 2. Two-dimensional simulations. WaterResources Research, 15(6), 1543–1559.

    Article  Google Scholar 

  • Zimmerman, D.A., G. de Marsily, C.A. Gotway, M.G. Marietta, C.L. Axness, R. Beauheim, R. Bras, J. Carrera. G. Dagan, P.B. Davies, D.P. Gallegos. A. Galli, J. Gómez-Hernández, P. Grindrod. A.L. Gutjahr, PK Kitanidis, A.M. Lavenue, D. Mclaughlin, S.P. Neuman, B.S. Ramarao, C. Ravenne, and Y. Rubin (1998). A comparison of seven geostatistically-based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resources Research, 34(6), 1373–1413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Chilès, JP. (2001). On the Contribution of Hydrogeology to Advances in Geostatistics. In: Monestiez, P., Allard, D., Froidevaux, R. (eds) geoENV III — Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0810-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0810-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7107-6

  • Online ISBN: 978-94-010-0810-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics