Skip to main content

Scattering properties of the retina and the choroids determined from OCT-A-scans

  • Chapter
Laser Scanning: Update 1

Abstract

Goal: To determine the coefficient and the anisotropy of scattering as well as the refractive indices in the retina and in the choroid in vivo. Methods: The power of coherent reflected light versus fundus depth is recorded in OCT-A-scans. The ratio of refractive indices is derived from the height of the reflection peaks. Provided that the absorption coefficient is known from fundus reflectometry, the scattering coefficient and anisotropy are calculated from the offset and the slope of the signal behind the reflection peaks on the basis of a single backscattering model. Results: We found scattering coefficients of 12/mm (retina) and 27.5/mm (choroid) as well as anisotropy values of 0.97 (retina) and 0.90 (choroid). Discussion: The OCT is usually employed for the measurement of intraocular distances. The new technique described here gives the unique opportunity to determine further interesting parameters of single ocular layers. The values given above are in good agreement with in vitro results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flott T, Gregory CA, Pulafito CA, Fujimoto JG. Optical coherence tomography. Science 1991: 254: 1178–1181.

    Article  PubMed  CAS  Google Scholar 

  2. Danielson BL, Whittenburg CD. Guided wave reflectometry with micrometer resolution. Appl Opt 1987; 26: 2836–2842.

    Article  PubMed  CAS  Google Scholar 

  3. Schmitt JM, Knüttel A, Bonner RE Measurement of optical properties of biological tissues by low-coherence reflectometry. Appl Opt 1993; 32: 6032–6042.

    Article  PubMed  CAS  Google Scholar 

  4. Fercher A F, Mengedoht K, and Werner W (1988) Eye length measurement by interferometry with partially coherent light. Optics Letters 13: 186–189

    Article  PubMed  CAS  Google Scholar 

  5. Hitzenberger CK. Optical measurement of the axial eye length by laser Doppler interferometry. Invest Ophthalmol Vis Sci 1991;32:616–624.

    PubMed  CAS  Google Scholar 

  6. Fercher AF. Optical coherence tomography. J Biomed Opt 1996; 1: 157–173.

    Article  PubMed  Google Scholar 

  7. Schmitt JM, Knüttel A, Grandjbakhche A, Bonner RF Optical characterization of dense tissue using low-coherence interferometry. Proc SPIE 1993; 1889: 197–211.

    Article  Google Scholar 

  8. Yadlowsky MJ, Schmitt JM, Bonner RF. Multiple scattering in optical coherence microscopy. Appl Opt 1995; 34: 5699–5707.

    Article  PubMed  CAS  Google Scholar 

  9. Brent RP. Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs, 1973.

    Google Scholar 

  10. Henyey LG, Greenstein JL. Diffuse radiation in the galaxy. Astrophys J 1941; 93: 70–83.

    Article  Google Scholar 

  11. Baumgartner A, Hitzenberger CK, Sattmann H, Drexler, W, Fercher F. Signal and resolution enhancement in dual beam optical coherence tomography of the human eye. J Biomed Opt 1998; 3: 45–54.

    Article  PubMed  CAS  Google Scholar 

  12. Naumann GOH. Pathologie des Auges, Bd. 1, Springer-Verlag, Berlin, Heidelberg, New York, 1997.

    Book  Google Scholar 

  13. Hammer M, Roggan A, Schweitzer D, Müller G. Optical prop erties of ocular fundus tissues — an in vitro study using the double-integrating-spere technique and inverse Monte Carlo simulation. Phys Med Biol 1995; 40: 963–978.

    Article  PubMed  CAS  Google Scholar 

  14. Yadlowsky MJ, Schmitt JM, Bonner RF. Contrast and resolution in the optical-coherence microscopy of dense biological tissue. SPIE Proc 1995; 2387: 193–203.

    Article  Google Scholar 

  15. Schmitt JM. Array detection for speckle reduction in optical coherence microscopy. Phys Med Biol 1997; 42: 1427–1439.

    Article  PubMed  CAS  Google Scholar 

  16. Lexer F, Fercher AF, Sattmann H, Drexler W, Molebny S. Dynamic coherent focus for transversal resolution enhancement of OCT. Proc SPIE 1998; 3251: 85–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hammer, H., Schweitzer, D., Thamm, E., Kolb, A., Strobel, J. (2001). Scattering properties of the retina and the choroids determined from OCT-A-scans. In: Sampaolesi, J.R. (eds) Laser Scanning: Update 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0322-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0322-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3866-9

  • Online ISBN: 978-94-010-0322-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics