Skip to main content

Luminescence From Si/Sio2 Nanostructures

  • Chapter
Book cover Towards the First Silicon Laser

Part of the book series: NATO Science Series ((NAII,volume 93))

Abstract

The discovery of the room-temperature luminescence from Si [1] and Ge nanocrystals [4] has stimulated considerable efforts in understanding optical properties of indirect-gap elemental semiconductor nanostructures. In particular, Si nanocrystals are receiving widespread interest because of their high quantum efficiency of light emission at room temperature. The photoluminescence (PL) and electroluminescence (EL) efficiency of crystalline Si (c-Si) nanoparticles have greatly increased in the last decade. Very recently, optical gain and stimulated emission have been reported in silicon nanoparticles [6]. In addition, there have been many different approaches towards useful Si light-emitting materials and devices compatible with current Si microelectronics [8]. The realization of bright Si light-emitting devices and silicon lasers will bring about a revolution in the semiconductor industry. Optical and electronic devices can be fabricated from the same material of silicon, and silicon will be the leading material for the future optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canham, L. T. (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57, 1046.

    Article  ADS  Google Scholar 

  2. Kanemitsu, Y., Ogawa, T., Shiraishi, K., and Takeda, K. (1993) Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell, Phys. Rev. B 48, 4883.

    Article  ADS  Google Scholar 

  3. Wilson, W. L., Szajowski, P. F., and Brus, L. E. (1993) Quantum confinement in size-selected, surface-oxidized silicon nanocrystals, Science 262, 1242.

    Article  ADS  Google Scholar 

  4. Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y., and Masumoto, Y., (1991) Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices, Appl. Phys. Lett. 59, 3168.

    Article  ADS  Google Scholar 

  5. Kanemitsu, Y., Uto, H., Masumoto, Y., and Maeda, Y. (1992) On the origin of visible photolumines-cence in nanometer-size Ge crystallites, Appl. Phys. Lett. 61, 2187.

    Article  ADS  Google Scholar 

  6. Pavesi, L., Dal Negre, L., Mazzoleni, C., Franzo, G., and Priolo, F. (2000) Optical gain in silicon nanocrystals, Nature 408, 440.

    Article  ADS  Google Scholar 

  7. Nayfeh, M. H., Barry, N., Therrien, J., Akcakir O., Gratton, E., and Belomoin, G (2001) Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles, Appl. Phys. Lett. 78, 1131.

    Article  ADS  Google Scholar 

  8. Ball, P. (2001) Let there be light, Nature 409, 974.

    Article  ADS  Google Scholar 

  9. Iyer, S. S. and Xie, Y.-H (1993) Light emission from silicon, Science 260, 40.

    Article  ADS  Google Scholar 

  10. Wehrspohn, R. B., Chazalviel, J. N., Ozanam, F., and Solomon, I (1999) Spatial versus quantum confinement in porous amorphous silicon nanostructures, Eur. Phys. J. B 8, 179.

    Article  ADS  Google Scholar 

  11. Kanemitsu, Y. Uto, H., Masumoto, Y., Matsumoto, T., Futagi, T. and Mimura, H. (1993) Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites, Phys. Rev. B 48, 2827.

    Article  ADS  Google Scholar 

  12. Bustarret, E., Sauvain, E., and Ligeon, M. (1997) High-resolution transmission electron microscopy study of luminescent anodized amorphous silicon, Philos. Mag. Lett. 75, 35.

    Article  ADS  Google Scholar 

  13. Kanemitsu, Y., Fukunishi, Y., and Kushida, T. (2000) Decay dynamics of visible luminescence in amorphous silicon nanoparticles, Appl. Phys. Lett. 77, 211.

    Article  ADS  Google Scholar 

  14. Street, R. A., Hydrogenated Amorphous Silicon (Cambridge Univ., Cambridge, 1991).

    Book  Google Scholar 

  15. Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J., and Brumhead, D. (1993) Spectroscopic identification of the luminescence mechanism of highly porous silicon, J. Lumin. 57, 257.

    Article  Google Scholar 

  16. Suemoto, T., Tanaka, K., Nakajima, A., and Itakura, T. (1993) T., Observation of phonon structures in porous Si luminescence, Phys. Rev. Lett. 70, 3659.

    Article  ADS  Google Scholar 

  17. Kanemitsu, Y., and Okamoto, S. (1998) Phonon structures and Stokes shift in resonantly excited luminescence of silicon nanocrystals, Phys. Rev. B 58, 9652.

    Article  ADS  Google Scholar 

  18. Shaklee, K. L., and Nahory, R. E. (1970) Valley-orbit splitting of free excitons? The absorption edge of Si, Phys. Rev. Lett. 24, 942.

    Article  ADS  Google Scholar 

  19. Matsumoto, T., Suzuki, J., Ohnumra, M., Kanemitsu, Y., and Masumoto, Y. (2001) Evidence of quantum size effect in nanocrystalline silicon by optical absorption, Phys. Rev. B 63, 195–322.

    Article  Google Scholar 

  20. Kanemitsu, Y., and Okamoto, S. (1997) Photoluminescence from Si/SiO2 single quantum wells by selective excitation, Phys. Rev. B 56, R15561.

    Article  ADS  Google Scholar 

  21. Takahashi, Y., Furuta, T., Ono, Y., Ishiyama, T., and Tabe, M. (1995) Photoluminescence from a silicon quantum well formed on separation by implanted oxygen substrates, Jpn. J. Appl. Phys. 34, 950.

    Article  ADS  Google Scholar 

  22. Kanemitsu, Y., Iiboshí, M., and Kushida, T. (2000) Photoluminescence dynamics of amorphous Si/SiO2 quantum wells, Appl. Phys. Lett. 76, 2200.

    Article  ADS  Google Scholar 

  23. Nishimoto, K., Sotta, D., Durand, H. A., Etoh, K., and Ito, K. (1998) Visible photoluminescence from a-Si:H/SiO2 superlattice fabricated by UHV evaporation, J. Lumin. 80, 439.

    Article  Google Scholar 

  24. Kanemitsu, Y., and Kushida, T. (2000) Size effects on the luminescence spectrum in amorphous Si/SiO2 multilayer structures, Appl. Phys. Lett. 11, 3550.

    Article  ADS  Google Scholar 

  25. Miyazaki, S., Yamada, K., and Hirose, M (1991) Optical and electrical properties of a-Si3N4:H/a-Si:H superlattices prepared by plasma-enhanced nitridation technique, J. Non-Cryst. Solids 137/138, 1119.

    Article  ADS  Google Scholar 

  26. Miyazaki S., and Hirose, M. (1989) Amorphous silicon superlattices prepared by direct photochemical deposition, Philos. Mag. B 60, 23.

    Article  Google Scholar 

  27. Lockwood, D. J., Lu, Z. H., and Baribeau, J.-M. (1996) Quantum confined luminescence in Si/SiO2 superlattices, Phys. Rev. Lett. 76, 539.

    Article  ADS  Google Scholar 

  28. Okamoto, S., and Kanemitsu, Y. (1997) Quantum confinement and interface effects on photolumines-cence from silicon single quantum wells, Solid State Commun. 103, 573.

    Article  ADS  Google Scholar 

  29. Grom, G F., Lockwood, D., J., McCaffrey, J. P., Labbe, H., J., Fauchet, P. M., White Jr, B., Diener, J., Kovalev, D., Koch, F., and Tsybeskov, L. (2000) Ordering and self-organization in nanocrystalline silicon, Nature 407, 358.

    Article  ADS  Google Scholar 

  30. Carrier, P., Lewis, L. J., and Dharma-wardana, M. W. C. (2002) Optical properties of structurally relaxed Si/SiO2 superlattices: The role of bonding at interfaces. Phys. Rev. B 65, 165339.

    Article  ADS  Google Scholar 

  31. Tiedje, T., Abeles, B., and Brooks, B. G. (1985) Energy transport and size effects in the photolumines-cence of amorphous-germanium/amorphous-silicon multilayer structures, Phys. Rev. Lett. 54, 2545.

    Article  ADS  Google Scholar 

  32. Nguyen, H. V., Lu, Y., Kim, S., Wakagi, M., and Collins, R. W. (1995) Optical properties of ultrathin crystalline and amorphous silicon films, Phys. Rev. Lett. 74, 3880.

    Article  ADS  Google Scholar 

  33. Park, N. M., Kim, T. S., and Park, S. J. (2001) Band gap engineering of amorphous silicon quantum dots for light-emitting diodes, Appl. Phys. Lett. 78, 2575.

    Article  ADS  Google Scholar 

  34. Tsang, C., and Street, R. A. (1979) Recombination in plasma-deposited amorphous Si:H: Luminescence decay, Phys. Rev. B 19, 3027.

    Article  ADS  Google Scholar 

  35. Wilson, B. A., Kerwin, T. P., and Harbison, J. P. (1985) Optical studies of thermalization mechanism in a-Sr.H, Phys. Rev. B 31, 7953.

    Article  ADS  Google Scholar 

  36. Estes, M. J., and Moddel, G. (1996) Luminescence from amorphous silicon nanostructures, Phys. Rev. B 54, 14633.

    Article  ADS  Google Scholar 

  37. Allan, G., Delerue, C., and Lannoo, M. (1997) Electronic structure of amorphous silicon nanoclusters, Phys. Rev. Lett. 78, 3161.

    Article  ADS  Google Scholar 

  38. Collins, R. W., Paesler, M. A., and Paul, W. (1980) The temperature dependence of photoluminescence in a-Si:H alloys, Solid State Commun. 34, 833.

    Article  ADS  Google Scholar 

  39. Tanaka, M., and Masumoto, Y. (2000) Very weak temperature quenching in orange luminescence of ZnS:Mn2+ nanocrystals in polymer, Chem. Phys. Lett. 324, 249.

    Article  ADS  Google Scholar 

  40. Kanemitsu, Y., Nihonyangaki, S., Sato, H., and Hirai, Y(2002) Efficient radiative recombination of indirect excitons in silicon nanowires, Phys. Stat. Sol. (a) 190, 755.

    Article  ADS  Google Scholar 

  41. Dean, P. J., Haynes, J. R., and Flood, W. F. (1967) New radiative recombination processes involving neutral donors and acceptors in silicon and germanium, Phys. Rev. 161, 711.

    Article  ADS  Google Scholar 

  42. Davis, G. (1989) The optical properties of luminescence centres in silicon, Phys. Rep. 176, 83.

    Article  ADS  Google Scholar 

  43. Nihonyanagi, S., and Kanemitsu, Y. (2002) Mechanism of room temperature luminescence in silicon nanowires, submitted for publication.

    Google Scholar 

  44. Tsybeskov, L., Moore, K. L., Duttagupta, S. P., Hirschman, K. D., Hall, D. G., and Fauchet, P. M. (1996) A Si-based light-emitting diode with room-temperature electroluminescence at 1.1 eV, Appl. Phys. Lett. 69, 3411

    Article  ADS  Google Scholar 

  45. Tsybeskov, L., Hirschman, K. D., Duttagupta, S. P., Zacharias, B. M., Fauchet, P. M., McCaffrey, J. P., and Lockwood, D. J (1998) Nanocrystalline-silicon superlattice produced by controlled recrystallization, Appl. Phys. Lett. 72, 43.

    Article  ADS  Google Scholar 

  46. Kanemitsu, Y., Inagaki, T. J., Ando, M., Matsuda, K., Saiki, T., and White, C. W. (2002) Photoluminescence spectrum of highly excited single CdS nanocrystals studied by a scanning near-field optical microscopy, Appl. Phys. Lett. 81, 141.

    Article  ADS  Google Scholar 

  47. Bacher, G., Weigand, R., Seufert, J., Kulakovskii, D., Gippius, N. A., Forchel, A., Leonardi, K., and Hommel, D. (1999) Biexciton versus exciton lifetime in a single semiconductor quantum dot, Phys. Rev. Lett. 83, 4417.

    Article  ADS  Google Scholar 

  48. Kanemitsu Y., and Okamoto, S. (1997) Resonantly excited photoluminescence from porous silicon: Effects of surface oxidation on resonant luminescence spectra, Phys. Rev. B 56, R1696.

    Article  ADS  Google Scholar 

  49. Kageshima, H., and Shiraishi, K. (1997) Microscopic mechanism for SiO2/Si interface passivation: Si=O double bond formation, Surf. Sci. 380, 61.

    Article  ADS  Google Scholar 

  50. Kageshima, H., and Shiraishi, K. (1997) First-principles study of photoluminescence from silicon/silicon-oxide interfaces, Mater. Res. Soc. Proc. 486, 337.

    Article  Google Scholar 

  51. Kanemitsu, Y., Okamoto, S., Otobe, M., and Oda, S. (1997) Photoluminescence mechanism in surface-oxidized silicon nanocrystals, Phys. Rev. B 55, R7375.

    Article  ADS  Google Scholar 

  52. Wolkin, M. V., Jörne, J., Fauchet, P. M., Allan, G., and Delerue, C. (1999) Electronic sates and luminescence in porous silicon quantum dots: The role of oxygen. Phys. Rev. Lett. 82, 197.

    Article  ADS  Google Scholar 

  53. Cullis, A. G., Canham, L. T., and Calcott, P. D. J. (1997) The structural and luminescence properties of porous silicon, J. Appl. Phys. 82, 909.

    Article  ADS  Google Scholar 

  54. Cullis, A. G., and Canham, L., T. (1991) Visible light emission due to quantum size effects in highly porous crystalline silicon, Nature 353, 335.

    Article  ADS  Google Scholar 

  55. Schuppler, S., Friedman, S. L., Marcus, M. A., Aldler, D. L., Xie, Y-H., Ross, F. M., Chabal, Y J. Harris, T. D., Brus, L. E., Brown, W. L., Chaban, E. E., Szajowski, P. F., Christman, S. B., and Citrin, P. H. (1995) Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si, Phys. Rev. B 52, 4910.

    Article  ADS  Google Scholar 

  56. Zhang., Q., and Bayliss, S. C. (1996) The correlation of dimensionality with emitted wavelength and ordering of freshly produced porous silicon, J. Appl. Phys. 79, 1351.

    Article  ADS  Google Scholar 

  57. Binder, M., Edelmann, T., Metzger, T. H., Mauckner, G., Goerigk., G., and Peisl, J. (1996) Bimodal size distribution in p-porous silicon studied by small angle x-ray scattering, Thin Solid Films 276, 65.

    Article  ADS  Google Scholar 

  58. Brus, L. E., Szajowski, P. F., Wilson, W. L. Harris, T. D., Schuppler, S., and Citrin, P. H. (1995) Electronic spectroscopy and photophysics of Si nanocrystals: Relationship to bulk c-Si and porous Si, J. Amer. Chem. Soc. 117, 2915.

    Article  Google Scholar 

  59. Takeoka, S., Fujii, M., and Hayashi, S. (2000) Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime, Phys. Rev. B 62, 16820.

    Article  ADS  Google Scholar 

  60. van Buuren, T., Dinh, L. N., Chase, L. L., Siekhus, W. J., and Terminello, L. J. (1998) Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys. Rev. Lett. 80, 3803.

    Article  ADS  Google Scholar 

  61. Matsumoto, T., Futagi, T., Mimura, H., and Kanemitsu, Y. (1993) Ultrafast decay dynamics of luminescence in porous silicon, Phys. Rev. B 47, 13876.

    Article  ADS  Google Scholar 

  62. Kanemitsu, Y. (1993) Slow decay dynamics of visible luminescence in porous silicon: Hopping of carries confined on a shell region in nanometer-size Si crystallites, Phys. Rev B 48, 12357.

    Article  ADS  Google Scholar 

  63. Kanemitsu, Y. (1994) Luminescence properties of nanometer-sized Si crystallites: Core and surface states, Phys. Rev. B 49, 16845.

    Article  ADS  Google Scholar 

  64. Kovalev, D., Heckler, H., Ben-Chorin, M, Polisski, G., Schwartzkopff, M., and Koch, F. (1998) Breakdown of the k-conservation rule in Si nanocrystals, Phys. Rev. Lett. 81, 2803.

    Article  ADS  Google Scholar 

  65. Ito, K., Ohyama, S., Uehara, Y., and Ushioda, S. (1995) Visible light emission spectra of individual microstructures of porous Si, Appl. Phys. Lett. 67, 2536.

    Article  ADS  Google Scholar 

  66. Mason, M. D., Credo, G. M., Weston, K. D. and Buratto, S. K. (1998) Luminescence of individual porous Si chromophores, Phys. Rev. Lett. 80, 5405.

    Article  ADS  Google Scholar 

  67. Valenta, J., Juhasz, R., and Linnros, J. (2002) Photoluminescence spectroscopy of single silicon quantum dots, Appl. Phys. Lett. 80, 1070.

    Article  ADS  Google Scholar 

  68. Leong, D., Harry, M., Reeson, K. J., and Homewood, K. P. (1997) A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1. 5 μm, Nature 387, 686.

    Article  ADS  Google Scholar 

  69. Mimura, A., Fujii, M., Hayashi, S., Kovalev, D., and Koch, F. (2000) Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals, Phys. Rev. B 62, 12625.

    Article  ADS  Google Scholar 

  70. Han, H. S., Seo, S. Y., and Shin, J. H. (2001) Optical gain at 1.54 μm in erbium-doped silicon nano-clusters sensitized waveguide, Appl. Phys. Lett. 79, 4568.

    Article  ADS  Google Scholar 

  71. Lu, Z. H., and Grozea, D. (2002) Crystalline Si/SiO2 quantum wells, Appl. Phys. Lett. 80, 255.

    Article  ADS  Google Scholar 

  72. Ng., W. L., Lourenco, M. A., Gwilliam, R. M., Ledain, S., Shao, G., and Homewood, K. P. (2001) An efficient room-temperature silicon-based light-emitting diode, Nature 410, 192.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kanemitsu, Y. (2003). Luminescence From Si/Sio2 Nanostructures. In: Pavesi, L., Gaponenko, S., Dal Negro, L. (eds) Towards the First Silicon Laser. NATO Science Series, vol 93. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0149-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0149-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1194-8

  • Online ISBN: 978-94-010-0149-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics