Skip to main content

Nutrient Balance and Physiological Processes at the Leaf Level

  • Chapter

Part of the book series: Tasks for vegetation Science ((TAVS,volume 12))

Abstract

The leaf mineral nutrient content, its seasonal variation and its eco-physiological significance in tree species of tropical plant communities is reviewed. Leaf span of tropical trees ranges from 6–9 months in deciduous species (rain-green type) up to little more than one year in evergreen species (annual evergreens). Leaves of deciduous species are characterized by lower specific leaf weights and higher nitrogen and phosphorus content per unit dry weight. Differences in leaf nutrient content are minimized when expressed on an area basis, this should be the unit for seasonal comparisons because of its relative constancy after full leaf expansion. Photosynthesis is related to leaf nitrogen content, but future studies should include a fractionation of nitrogen in order to differentiate the accumulation of nitrogenous substances not metabolically related to photosynthesis. The study of nutrient use efficiency in production and growth is emphasized to understand the processes of selection in nutrient rich and nutrient poor environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addicott FT (1976) Abscission strategies in the behavior of tropical trees. In Tomlinson PB and Zimmermann MH, eds. Tropical trees as living systems, pp. 381–398. Cambridge, Cambridge University Press.

    Google Scholar 

  • Andreeva TF and Avdeeva TA (1970) Fraction I protein and the photosynthetic activity of leaves, Fiziol. Razt. 17, 225–233.

    CAS  Google Scholar 

  • Beadle NCW (1966) Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly, Ecology 47, 992–1007.

    Article  Google Scholar 

  • Chabot BF and Hicks DJ (1982) The ecology of leaf life spans, Ann. Rev. Ecol. Syst. 13, 229–259.

    Article  Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants, Ann. Rev. Plant Physiol. 11, 233–260.

    CAS  Google Scholar 

  • Chapin FS III and Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous Taiga trees, Ecology 64, 376–391.

    Article  CAS  Google Scholar 

  • Christie EK and Moorby J (1975) Physiological responses of semiarid grasses I. The influence of phosphorus supply on growth and phosphorus absorption, Austr. J. Agric. Res. 26, 423–436.

    Article  Google Scholar 

  • Cuenca G (1976) Balance nutricional de a1gunas lenosas de dos ecosistemas contrastantes: Bosque nublado y Bosque declduo, Tesis de Licenciatura, Escuela de Biolog1a, UCV, Caracas.

    Google Scholar 

  • Delgado M and Medina E (1978) Leaf succulence and potassium accumulation. In Singh JS and Gopal B, eds. Glimpses of Ecology, pp. 417–424. hit. Sci. Publ., Jaipur, Sidia

    Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. John Wiley and Sons, Inc. New York.

    Google Scholar 

  • Ernst W (1975) Variation in the mineral contents of leaves of trees in Miombo woodland in South Central Africa, J. Ecology 63, 801–807.

    Article  CAS  Google Scholar 

  • Evans GC (1972) The quantitative analysis of plant growth. University of California Press, Berkeley.

    Google Scholar 

  • Field C (1981) Leaf age effects on the carbon gain of individual leaves in relation to microsite. In Margaris NS and Mooney HA, eds. Components of productivity of Mediterranean regions: basis and applied aspects, pp. 41–50. Dr. W. Junk, The Hague.

    Google Scholar 

  • Fischer RA (1968) Stomatal opening:role of potassium uptake by guard cells, Science 160, 784–785.

    Article  PubMed  CAS  Google Scholar 

  • Furch K and Klinge H (1978) Towards a regional characterization of the biogeochemistry of alkali and alkali-earth metals in northern South America, Acta Cient. Ven. 29, 434–444.

    Google Scholar 

  • Go1ley F. McGinnis JT, Clements RG, Child GI and Duever MJ (1975) Mineral cycling in a tropical moist forest ecosystem. Athens, University of Georgia Press.

    Google Scholar 

  • Gray JT (1983) Nutrient use by evergreens and deciduous shrubs in Southern California. I. Community nutrient cycling and nutrient use efficiency, J. Ecology 71, 21–41.

    Article  CAS  Google Scholar 

  • Grimm U and Fassbender HW (1981) Ciclos bioquímicos en un ecosistema forestal de los Andes Occidentales de Venezuela. I. Inventario de las reservas orgánicas y minerales (N, P, K, Ca, Mg, Mn, Fe, Al, Na), Turrialba 31, 27–36.

    Google Scholar 

  • Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains with special reference to mineral nutrition, Ann. Rev. Ecol. Syst. 8, 83–107.

    Article  CAS  Google Scholar 

  • Gulmon SL and Chu C (1981) The effects of light and nitrogen on photosynthesis, leaf characteristics, and dry matter allocation in the Chaparral shrub, Diplacus aurantiacus, Oecologia 49, 207–212.

    Article  Google Scholar 

  • Keller T 1972. Gaseous exchange of forest trees in relation to some edaphic factors, Photosynthetica 6: 197–206.

    CAS  Google Scholar 

  • Kinzel H (1982) Pflanzenoekologie and Mineralstoffwechsel. Eugen Ulmer Verlag. Stuttgart.

    Google Scholar 

  • Klinge H (1976) Bilanzierung von Hauptnaehrstoffen im Oekosystemen tropischer Regenwal, Biogeographica 7, 59–76.

    Google Scholar 

  • Koerner CH, Scheel JA and Bauer H (1979) Maximum diffusive conductance in vascular plants, Photosynthetica 13, 45–82.

    Google Scholar 

  • Kramer PJ and Kozlowski TT (1979) Physiology of woody plants. Academic Press New York.

    Google Scholar 

  • Larcher W (1961) Jahresgang der Assimilations und Respirationsvermoegens von Olea Europaea L. ssp. sativa Hoff., et Link., Quercus ilex L. und Quercus pubescens Willd. aus dem noerdlichen Gardaseegebiet, Planta 56, 575–606.

    Article  CAS  Google Scholar 

  • Larcher W (1969) The effect of environmental and physiological variables on the carbon dioxide exchange of trees, Photosynthetica 3, 167–198.

    CAS  Google Scholar 

  • Linder S, McDonald J and Lohammar T (1981) Effect of nitrogen status and irradiance during cultivation on photosynthesis and respiration in birch seedlings (Betula verrucosa Ehrh.), Technical report No. 12, 19 p. Energy Forestry Project, Swedish Agricultural University.

    Google Scholar 

  • Loetsch B (1971) Sukkulenz und Kaliumspeicherung von Stickstoffmangel Pflanzen, Z. Pflanzenphysiol. 64, 393–399.

    Google Scholar 

  • Loneragan JF and Snowball K (1969) Calcium requirements of plants, Austr. J. Agrie. Res. 20, 465–478.

    Article  CAS  Google Scholar 

  • Loomis WD (1974) Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organells, Methods in Enzymology 31, 528–544.

    Article  PubMed  CAS  Google Scholar 

  • Loveless AR (1961) A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves, Ann. Bot., ns, 25, 168–183.

    CAS  Google Scholar 

  • Marin D and Medina E (1981) Leaf duration, nutrient content and sclerophylly of very dry tropical forest trees, Acta Cient. Ven. 32, 508–514.

    Google Scholar 

  • McDonald J, Lohammar T and Linder S (1981) Effect of leaf nitrogen content on CO2 exchange in a number of Salix clones, Technical Report No. 16. Energy Forestry Project, Agricultural University Sweden. 19 p.

    Google Scholar 

  • Medina E (1970) Relationships between nitrogen level, photosynthetic capacity, and carboxydismutase activity in Atriplex patula leaves, Carnegie Institution Year Book 69, 655–662.

    Google Scholar 

  • Medina E (1981) Nitrogen content, leaf structure and photosynthesis in higher plants. Report to UNEP Study Group on Photosynthesis and Bioproductivity. London.

    Google Scholar 

  • Medina E (1982) Physiological ecology of neotropical savanna plants. In Huntley BJ and Walker BH, eds. Ecology of Tropical Savannas, pp. 308–335. Springer-Verlag Berlin.

    Google Scholar 

  • Medina E, Cuevas E and Weaver P (1981) Composicion foliar y transpiracion de especies leñosas de Pico del Este, Sierra de Luquillo, Puerto Rico, Acta Cientifica Venezolana 32, 159–165.

    Google Scholar 

  • Medina E. Mendoza A and Montes R (1978) Nutrient balance and organic matter production in the Trachypogon savannas of Venezuela. Tropical Agric. ( Trinidad ) 55, 243–253.

    CAS  Google Scholar 

  • Medway Lord (1972) Phenology of a tropical rain forest in Malaya Biol. J. Linn. Soc. 4, 117–146.

    Article  Google Scholar 

  • Mengel K and Kirkby EA (1982) Principles of Plant nutrition. 3rd Edition. International Potash Institute. Bern, Switzerland.

    Google Scholar 

  • Migus WN and Hunt LA (1980) Gas exchange rates and nitrogen concentrations in two winter wheat cultivars during the grain-filling period, Canadian J. Bot. 58, 2110–2116.

    Article  CAS  Google Scholar 

  • Monasterio M and Sarmiento G (1976) Phenological strategies of plant species in the tropical savanna and the semitleciduous forest of the Venezuelan Llanos, J. Biogeography 3, 325–356.

    Article  Google Scholar 

  • Mooney HA, Ferrar PJ and Slatyer RO (1978) Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus, Oecologia (Berl.) 36, 103–111.

    Article  Google Scholar 

  • Mooney HA and Gulmon SL (1982) Constraints on leaf structure and function in reference to herbivory, Bioscience 32, 198–206.

    Article  CAS  Google Scholar 

  • Mooney H and Rundel P (1979) Nutrient relations of the evergreen shrub, Adenostoma fasciculatum. in the California Chaparral, Bot. Gaz. 140, 109–113.

    Article  CAS  Google Scholar 

  • Montes R and Medina E (1977) Seasonal changes in nutrient content of leaves of savanna trees with different ecological behavior, Geo-Eco-Trop 1, 295–307.

    CAS  Google Scholar 

  • Mothes K (1932) Ernaehrung, Struktur und Transpiration. Ein Beitrag zur Kausalanalyse der Xeromorphosen, Biol. Zb. 52, 93–223.

    Google Scholar 

  • Motta N and Medina E (1978) Early growth and photosynthesis of tomato (Lycopersicum esculentum L.) under nutritional deficiencies, Turrialba 28, 135–141.

    CAS  Google Scholar 

  • Murty KS, Smith TA and Bould C (1971) The relation between the putrescine content and potassium status of Black Currant leaves, Ann. Bot. 35 687–695.

    CAS  Google Scholar 

  • Natr L (1972) Influence of mineral nutrients on photosynthesis of higher plants, Photosynthetica 6, 80–99.

    CAS  Google Scholar 

  • Natr L (1975) Influence of mineral nutrition on photosynthesis and the use of assimilates. In Cooper JP, ed. Photosynthesis and Productivity in different Environments, International Biological Programme 3, pp. 537–555. Cambridge University Press. Cambridge.

    Google Scholar 

  • Nevins DJ and Loomis RS (1970) Nitrogen nutrition and photosynthesis in sugar beet (Beta vulgaris L.), Crop Science 10, 21–25.

    Article  CAS  Google Scholar 

  • Peace WJ and MacDonald FD (1981) An investigation of the leaf anatomy, foliar mineral levels, and the water relations of trees of a Sarawak forest, Biotropica 13, 100–109.

    Article  Google Scholar 

  • Peoples RP and Koch DW (1979) Role of potassium in carbon dioxide assimilation in Medicago sativa L, Plant Physiol. 63, 878–881.

    Article  PubMed  CAS  Google Scholar 

  • Proctor J and Woodwell SRJ (1975) The ecology of serpentine soils, Adv. Ecol. Res. 9, 255–366.

    Article  Google Scholar 

  • Ryan DF and Bormann FH (1982) Nutrient resorption in northern hardwood forests, Bioscience 32: 29–32.

    Article  CAS  Google Scholar 

  • Saeki T and Nomoto N (1958) On the seasonal change of photosynthetic activity of some deciduous and evergreen broadleaf trees, Bot. Mag. (Tokyo) 71, 235–241.

    Google Scholar 

  • Sasahara T (1982) Changes in size and number of mesophyll cells, nitrogen content and photosynthesis with leaf order in Brassica spp, Ann. Bot. 50, 379–383.

    CAS  Google Scholar 

  • Schlesinger WH and Chabot BF (1977) The use of water and minerals by evergreen and deciduous shrubs in Okefenokee swamp, Bot. Gaz. 138, 490–497.

    Article  CAS  Google Scholar 

  • Seth SK and Bhatnagar HP (1960) Interrelations between mineral constituents of foliage, soil properties, site quality and regeneration status in some Shorea robusta forests, Indian Forester 86, 590–601.

    Google Scholar 

  • Small E (1972) Photosynthetic rates in relation to nitrogen cycling as an adaptation to nutrient deficiency in peat bog plants. Can. J. Bot. 50, 2227–2233.

    Article  CAS  Google Scholar 

  • Sobrado MA and Medina E (1980) General morphology, anatomical structure and nutrient content of sclerophyllous leaves of the “Bana” vegetation of Amazonas, Qecologia (Berl.) 45, 341–345.

    Article  Google Scholar 

  • Sprick E (1979) Composicitm mineral y contenido de fenoles foliares de especies lenosas de tres bosques contrastantes de la region Amazftnica. Tesis de Licenciatura, Escuela de Biologia, UCV, Caracas.

    Google Scholar 

  • Staaf H (1982) Plant nutrient changes in beech leaves during senescence as influenced by site characteristics. Acta Cfecologia, Oecol. Plant. 3, 161–170.

    Google Scholar 

  • Stocker O (1931) Transpiration und Wasserhaushalt in verschiedenen Klimazonen. I. Untersuchungen an der arktischen Baumgrenze in Schwedisch Lappland. Jahrb. wiss. Bot. 75, 494–549.

    Google Scholar 

  • Stoecker G and Hacker E (1976) Untersuchungen ueber Stickstoff-Blattspiegel-Werte einiger Bodenpflanzen naturnaher Berg-Fichtenwaelder. Saisonale Veraenderungen und artspezifischen Relationen, Flora 165: 65–94.

    CAS  Google Scholar 

  • Tamm CO (1951) Seasonal variation in composition of birch leaves, Physiologia Plantarum 4: 461–469.

    Article  CAS  Google Scholar 

  • Tanner EVJ (1977) Four montane rainforests of Jamaica: A quantitative characterization of the floristics, the soils and the foliar mineral levels, and a discussion of the interrelations. J. Ecology 65: 883–918.

    Article  CAS  Google Scholar 

  • Thomas WA and Grigal DF (1976) Phosphorus conservation by evergreenness on mountain laurel. Oikos 27, 19–26.

    Article  CAS  Google Scholar 

  • Tukey HB (1970) The leaching of substances from plants. Ann. Rev. Plant Physiol. 21, 305–324.

    Article  CAS  Google Scholar 

  • Wareing PF (1977) Growth substances and integration in the whole plant. In Jennings DH, ed. Integration of activity in the higher plant, pp. 337–366, Symposium XXXI, Society for Experimental Biology. Cambridge University Press. Cambridge, UK.

    Google Scholar 

  • Walter H (1973) Die Vegetation der Erde. Die tropischen und subtropischen Zonen, IIIe. Auflage VEB Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Woodwell GM (1974) Variation of nutrient content of leaves of Quercus alba, Quercus coccina, and Pinus rigida in the Brookhaven forest from bud-break to abscission, Am. J. Brot. 61, 749–753.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Medina H. A. Mooney C. Vázquez-Yánes

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr W. Junk Publishers, The Hague

About this chapter

Cite this chapter

Medina, E. (1984). Nutrient Balance and Physiological Processes at the Leaf Level. In: Medina, E., Mooney, H.A., Vázquez-Yánes, C. (eds) Physiological ecology of plants of the wet tropics. Tasks for vegetation Science, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7299-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7299-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7301-5

  • Online ISBN: 978-94-009-7299-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics