Skip to main content

Frequency-Modulation Characteristics of Laser Diodes

  • Chapter

Part of the book series: Advances in Optoelectronics (ADOP) ((ADOP,volume 3))

Abstract

If a laser diode is directly modulated one obtains a modulation of the optical power and also a modulation of the optical frequency. In Section 4.5 we discussed the modulation of the longitudinal mode spectrum, but in addition the optical emission frequency of each of the modes is modulated. Any variation of the injection current yields a variation of the carrier density, which in turn yields a variation of the refractive index and thus of the optical emission frequency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura: “Direct frequency modulation in AlGaAs semiconductor lasers”; IEEE J. Quant. Electron., Vol. QE-18, pp. 582–595, April 1982.

    Article  Google Scholar 

  2. C. Harder, K. Vahala, and A. Yariv: “Measurement of the linewidth enhancement factor α of semiconductor lasers”; Appl. Phys. Lett., Vol. 42, pp. 328–330, 15th Feb. 1983.

    Article  Google Scholar 

  3. T. L. Koch and J. E. Bowers: “Nature of wavelength chirping in directly modulated semiconductor lasers”; Electron. Lett., Vol. 20, pp. 1038–1040, 6th Dec. 1984.

    Article  Google Scholar 

  4. O. Nilsson and Y. Yamamoto: “Small-signal response of a semiconductor laser with inhomogeneous linewidth enhancement factor: possibilities of a flat carrier-induced FM response”; Appl. Phys. Lett., Vol. 46, pp. 223–225, 1st Feb. 1985.

    Article  Google Scholar 

  5. C. B. Su, V. Lanzisera and R. Olshansky: “Measurement of nonlinear gain from FM-modulation index of InGaAsP lasers”; Electron. Lett., Vol. 21, pp. 893–895, 26th Sept. 1985.

    Article  Google Scholar 

  6. T. L. Koch and R. A. Linke: “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping”; Appl. Phys. Lett., Vol. 48, pp. 613–615, 10th March 1986.

    Article  Google Scholar 

  7. R. Schimpe, J. E. Bowers, and T. L. Koch: “Characterisation of frequency response of 1.5 μm InGaAsP DFB laser diode and InGaAs pin photodiode by heterodyne measurement technique”; Electron. Lett., Vol. 22, pp. 453–454, 24th April 1986.

    Article  Google Scholar 

  8. K. Kikuchi, T. Fukushima and T. Okoshi: “Frequency-modulation characteristics of semiconductor lasers: deviation from theoretical prediction by rate equation analysis”; Electron. Lett., Vol. 22, pp. 741–743, 3rd July 1986.

    Article  Google Scholar 

  9. A. S. Sudbø: “The frequency chirp of current modulated semiconductor diode lasers”; IEEE J. Quant Electron., Vol. QE-22, pp. 1006–1008, July 1986.

    Article  Google Scholar 

  10. O. Doyle: “Measuring modulus and phase of chirp/modulated power ratio”; Electron. Lett., Vol. 23, pp. 133–134, 29th Jan. 1987.

    Article  Google Scholar 

  11. W. Harth: “Quasistatic carrier induced frequency chirp in semiconductor laser diodes”; Arch. Elektr. Übertr., Vol. 41, pp. 180–182, May/June 1987.

    Google Scholar 

  12. R. E. Epworth: “The measurement of static and dynamic coherence phenomena using a Michelson interferometer”; Proc. Opt. Comm. Conf., Amsterdamm, Sept. 1979, paper 4.2.

    Google Scholar 

  13. S. Saito, Y. Yamamoto, and T. Kimura: “Optical heterodyne detection of directly frequency modulated semiconductor laser signals”; Electron. Lett., Vol. 16, pp. 826–827, 23rd Oct. 1980.

    Article  Google Scholar 

  14. A. Dandridge and L. Goldberg: “Current-induced frequency modulation in diode lasers”; Electron. Lett., Vol. 18, pp. 302–304, 1st April 1982.

    Article  Google Scholar 

  15. H. Olesen and G. Jacobsen: “Phase delay between intensity and frequency modulation of a semiconductor laser (including a new measurement method)”; Proc. 8th Europ. Conf. on Opt Comm., Cannes, France, 21–24 Sept. 1982, pp. 291–295.

    Google Scholar 

  16. G. Jacobsen, H. Olesen, F. Birkedahl and B. Tromberg: “Current/frequency-modulation characteristics for directly optical frequency-modulated injection lasers at 830 nm and 1.3 μm”; Electron. Lett., Vol. 18, pp. 874–876, 30th Sept. 1982.

    Article  Google Scholar 

  17. S. B. Alexander and D. Welford: “Equalisation of semiconductor diode laser frequency modulation with a passive network”; Electron. Lett., Vol. 21, pp. 361–362, 25th April 1985.

    Article  Google Scholar 

  18. D. Welford and S. B. Alexander: “Magnitude and phase characteristics of frequency modulation in directly modulated GaAlAs semiconductor diode lasers”; J. Lightwave Technology, Vol. LT-3, pp. 1092–1099, Oct. 1985.

    Article  Google Scholar 

  19. K. Kikuchi, T. Fukushima and T. Okoshi: “Stripe-structure dependence of frequency modulation characteristics of AlGaAs lasers”; Electron. Lett., Vol. 21, pp. 1088 – 1090, 7th Nov. 1985.

    Article  Google Scholar 

  20. R. S. Vodhanel and N. K. Cheung: “Direct frequency modulation of vapor phase transported distributed feedback semiconductor lasers”; Appl. Phys. Lett., Vol. 48, pp. 966–968, 14th April 1986.

    Article  Google Scholar 

  21. M. Kitamura, M. Yamaguchi, S. Murata, I. Mito, and K. Kobayashi: “Low-threshold and high-temperature single-longitudinal-mode operation of 1.55 μm-band DFB-DC-PBH LDs”; Electron. Lett., Vol. 20, pp. 595–596, 5th July 1984.

    Article  Google Scholar 

  22. F. Koyama, Y. Suematsu, S. Arai and T.-E. Tawee: “1.5–1.6 μm GalnAsP/InP dynamic-single-mode (DSM) lasers with distributed Bragg reflector”; IEEE J. Quant. Electron., Vol. QE-19, pp. 1042–1051, June 1983.

    Google Scholar 

  23. N. A. Olsson, N. K. Dutta, and K. Y. Lion: “Dynamic linewidth of amplitude-modulated single-longitudinal-mode semiconductor lasers operating at 1.5 μm wavelength”; Electron. Lett., Vol. 20, pp. 121–122, 2nd Feb. 1984.

    Article  Google Scholar 

  24. D. A. Frisch and I. D. Henning: “Effect of laser chirp on optical systems-initial tests using a 1480 nmDFB laser”; Electron. Lett., Vol. 20, pp. 631–633, 19th July 1984.

    Article  Google Scholar 

  25. Y. Yoshikuni, T. Matsuoka, G. Motosugi and N. Yamanaka: “Fine structures in the broadened line of distributed feedback lasers unter high-speed direct modulation”; Appl. Phys. Lett., Vol. 45, pp. 820–822, 15th Oct. 1984.

    Article  Google Scholar 

  26. G. Motosugi, Y. Yoshikuni, and Y. Itaya: “Spectral characteristics of a DFB laser unter high-speed direct modulation”; Electron. Lett., Vol. 20, pp. 849–850, 11th Oct. 1984.

    Article  Google Scholar 

  27. M. Osinski and M. J. Adams: “Transient time-averaged spectra of rapidly-modulated semiconductor lasers”; IEE Proc., Vol. 132, Part J, pp. 34–37, Feb. 1985.

    Google Scholar 

  28. Y. Yoshikuni, G. Motosugi, K. Kurumada, and T. Ikegami: “Optimum operation of DFB lasers unter chirped pulse transmission”; Electron. Lett., Vol. 21, pp. 476–477, 23rd May 1985.

    Google Scholar 

  29. R. A. Linke: “Modulation induced transient chirping in single frequency lasers”; IEEE J. Quant. Electron., Vol. QE-21, pp. 593–597, June 1985.

    Article  Google Scholar 

  30. G. V. Agrawal: “Power spectrum of directly modulated single-mode semiconductor lasers: chirp-induced fine structure”; IEEE J. Quant. Electron., Vol. QE-21, pp. 680–686 and 1485, June and Nov. 1985

    Article  Google Scholar 

  31. J. Buus: “Dynamic line broadening of semiconductor lasers modulated at high frequencies”; Electron. Lett., Vol. 21, pp. 129–131, 14th Feb. 1985.

    Article  Google Scholar 

  32. C. Lin and T. L. Koch: “Chirping in 1.55 μm vapour-phase-transport distributed feedback (VPTDFB) semiconductor lasers under picosecond gain switching and 4 GHz modulation”; Electron. Lett., Vol. 21, pp. 958–960, 10th Oct. 1985.

    Article  Google Scholar 

  33. T. M. Shen and G. P. Agrawal: “Pulse-shape effects on frequency chirping in single-frequency semiconductor lasers under current modulation”; J. Lightwave Technology, Vol. LT-4, pp. 497–503, May 1986.

    Article  Google Scholar 

  34. P. Andersson and T. Andersson: “Chirp in picosecond pulses from diode lasers: dependence on the modulation conditions and the linewidth enhancement factor”; J. Lightwave Technology, Vol. LT-4, pp. 795–798, July 1986.

    Article  Google Scholar 

  35. J. E. Caroll, F. Eng, I. H. White and D. F. G. Gallagher: “Dependence of chirp in injection lasers on temporal optical pulse shape”; IEE Proc., Vol. 133, Part J, pp. 279–282, August 1986.

    Google Scholar 

  36. J. P. van der Ziel, R. M. Mikulyak, and H. M. Blount: “Reduction of relaxation resonance and wavelength chirp in antireflection coated 1.3 μm vee-groove InGaAsP-lasers”; J. Appl. Phys., Vol. 59, pp. 1038–1041, 15th Feb. 1986.

    Article  Google Scholar 

  37. R. Olshansky and D. Fye: “Reduction of dynamic linewidth in single-frequency semiconductor lasers”; Electron. Lett., Vol. 20, pp. 928–929, 25th Oct. 1984.

    Article  Google Scholar 

  38. L. Bickers and L. D. Westbrook: “Reduction of transient laser chirp in 1.5 μm DFB lasers by shaping the modulation pulse”; IEE Proc., Vol. 133, Part J, pp. 155–162, April 1986.

    Google Scholar 

  39. F. Koyama and K. Iga: “Frequency chirping of external modulation and its reduction”; Electron. Lett., Vol. 21, pp. 1065–1066, 7th Nov. 1985.

    Article  Google Scholar 

  40. K. Petermann: “Analysis of reduced chirping of semiconductor lasers for improved single-mode-fibre transmission capacity”; Electron. Lett., Vol. 21, pp. 1143–1145, 21st Nov. 1985.

    Article  Google Scholar 

  41. A. P. Mozer: “Einfluß der optischen Pulsform auf das Bitraten-Längenprodukt”; Arch. Elektron. Übertr., Vol. 40, pp. 203–207, July/Aug. 1986.

    Google Scholar 

  42. K. Petermann und U. Krüger: “Chirp reduction in intensity-modulated semiconductor lasers for maximum transmission capacity of single-mode fibres”; Arch. Elektron. Übertr., Vol. 40, pp. 283–288, Sept./Oct. 1986.

    Google Scholar 

  43. P. J. Corvini and T. L. Koch: “Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers”; J. Lightwave Technology, Vol. LT-5, pp. 1591–1595, Nov. 1987.

    Article  Google Scholar 

  44. S. D. Personick: “Receiver design for digital fibre optic communication system I, II”; Bell Syst. Techn. J., Vol. 52, pp. 843–886, 1973.

    Google Scholar 

  45. D. Marcuse: “Pulse distortion in single-mode fibers. 3: chirped pulses”; Appl. Opt., Vol. 20, pp. 3573–3579, 15th Oct. 1981.

    Article  Google Scholar 

  46. F. Koyama and Y. Suematsu: “Analysis of dynamic spectral width of dynamic-single-mode (DSM) lasers and related transmission bandwidth of single-mode fibers”; IEEE J. Quant. Electron., Vol. QE-21, pp. 292–297, April 1985.

    Article  Google Scholar 

  47. K. Tajima and K. Washio: “Generalized view of Gaussian pulse-transmission characteristics in single-mode optical fibers”; Opt. Lett., Vol. 10, pp. 460–462, Sept. 1985.

    Article  Google Scholar 

  48. U. Krüger and K. Petermann: “Limits of dispersive optical fibre transmission for chirped pulses of finite extinction ratio and nonlinear gain”; Electron. Lett., Vol. 22, pp. 1286–1288, 20th Nov. 1986.

    Article  Google Scholar 

  49. K. Iwashita, K. Nakagawa, A. Nakano and Y. Suzuki: “Chirp pulse transmission through a single-mode fibre”; Electron. Lett., Vol. 18, pp. 873–874, 30th Sept. 1982.

    Article  Google Scholar 

  50. A. H. Gnauck, B. L. Kasper, R. A. Linke, R. W. Dawson, T. L. Koch, T. J. Bridges, E. G. Burkhardt, R. T. Yen, D. P. Wilt, J. C. Campbell, K. Ciemecki Nelson, and L. G. Cohen: “4 Gbit/s transmission over 103 km of optical fiber using a novel electronic multiplexer/demultiplexer”; J. Lightwave Technology, Vol. LT-3, pp. 1032–1035, Oct. 1985.

    Article  Google Scholar 

  51. L. D. Westbrook: “Dispersion of linewidth-broadening factor in 1.5 μm laser diodes”; Electron. Lett., Vol. 21, pp. 1018–1019, 24th Oct. 1985.

    Article  MathSciNet  Google Scholar 

  52. S. Ogita, M. Yano, and H. Imai: “Theoretical calculation of the linewidth enhancement of DFB lasers”; Electron. Lett., Vol. 22, pp. 580–581, 22nd May 1986.

    Article  Google Scholar 

  53. M. Osinski and J. Buus: “Linewidth broadening factor in semiconductor lasers — an overview”; IEEE J. Quant. Electron., Vol. QE-23, pp. 9–29, Jan. 1987.

    Article  Google Scholar 

  54. C. A. Green, N. K. Dutta, and W. Watson: “Linewidth enhancement factor in InGaAsP/InP multiple quantum well lasers”; Appl. Phys. Lett., Vol. 50, pp. 1409 – 1410, 18th May 1987.

    Article  Google Scholar 

  55. L. D. Westbrook and M. J. Adams: “Simple expressions for the linewidth enhancement factor in direct-gap semiconductors”; IEE Proc., Part J, Vol. 134, pp. 209–214, Aug. 1987.

    Google Scholar 

  56. T. Fujita, J. Ohya, S. Ishizuka, K. Fujito, and H. Sato: “Oscillation frequency shift suppression of semiconductor lasers coupled to external cavity”; Electron. Lett., Vol. 20, pp. 416–417, 10th May 1984.

    Article  Google Scholar 

  57. K. Vahala and A. Yariv: “Detuned loading in coupled cavity semiconductor lasers — effect on quantum noise and dynamics”; Appl. Phys. Lett., Vol. 45, pp. 501–503, 1st Sept. 1984.

    Article  Google Scholar 

  58. L. A. Coldren, G. D. Boyd and C. A. Burrus: “Dependence of chirping on cavity separation in two-section coupled-cavity lasers”; Electron. Lett., Vol. 21, pp. 527 – 528, 6th June 1985.

    Google Scholar 

  59. F. Kappeler: “Dynamic single-frequency low-chirp operation of a laterally coupled (LCW) laser”; Electron. Lett., Vol. 20, pp. 1040–1041, 6th Dec. 1984.

    Article  Google Scholar 

  60. G. H. B. Thompson: “Compensation of line-broadening factor in twin-stripe semiconductor lasers and improved modulation potential”; Electron. Lett., Vol. 22, pp. 621–622, 5th June 1986.

    Article  Google Scholar 

  61. R. F. Kazarinov and C. H. Henry: “The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to a passive resonator”; IEEE J. Quant. Electron., Vol. QE-23, pp. 1401–1409, Sept. 1987.

    Article  Google Scholar 

  62. E. Patzak, A. Sugimura, S. Saito, T. Mukai, and H. Olesen: “Semiconductor linewidth in optical feedback configurations”; Electron. Lett., Vol. 19, pp. 1026–1027, 24th Nov. 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Petermann, K. (1988). Frequency-Modulation Characteristics of Laser Diodes. In: Laser Diode Modulation and Noise. Advances in Optoelectronics (ADOP), vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2907-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2907-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1204-8

  • Online ISBN: 978-94-009-2907-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics