Host-plant relationships of lycaenid butterflies: large-scale patterns, interactions with plant chemistry, and mutualism with ants

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The Lycaenidae are the second-largest family of butterflies. From host-plant data collated for more than 1200 species worldwide, large-scale taxonomic, geographical and ecological patterns emerge which suggest that phytochemical similarities and barriers, coupled with phylogenetic conservatism and constraints are key factors governing host-plant use. More than two thirds of the lycaenid species are restricted to one plant family or genus. Affiliations with ‘toxic’ plants are rare in the Lycaenidae, and excretion rather than sequestration of plant toxins appears to be their usual way of detoxifying host-plant compounds. Flavonoids are frequently sequestered by lycaenid larvae and are subsequently concentrated as pigments in the adults’ wings, where they might play a role in visual communication. Mutualistic associations with ants occur in the larvae of more than 50% of the extant Lycaenidae species. Because of a conflict between the nutrient demands of the larvae and the proportion of plant-derived resources allocated to maintain the mutualism with ants, variation in resource quality often translates into variation of mutualistic capacities of the caterpillars, in particular under nutrient stress.