Skip to main content

Photonic Band Gap Structures: Studies of the Transmission Coefficient

  • Chapter
Photonic Band Gap Materials

Part of the book series: NATO ASI Series ((NSSE,volume 315))

Abstract

Recently, there has been growing interest in the development of Photonic Band Gap (PBG) materials [1–21]. These are periodic dielectric materials exhibiting frequency regions where electromagnetic (EM) waves cannot propagate. The reason for the interest on PBG materials arises from the possible applications of these materials in several scientific and technical areas such as filters, optical switches, cavities, design of more efficient lasers, etc. [1, 2]. Most of the research effort has been concentrated in the development of two-dimensional (2D) and three-dimensional (3D) PBG materials consisting of positive and frequency independent dielectrics [1–18] because, in this case, one can neglect the possible problems related to the absorption [15, 19]. However, there is more recent work on PBG materials constructed from metals [20, 21] which suggests that these metallic structures may be very useful in the low frequency regions. In these regions, the metals become almost perfect reflectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See the special issue of the J. Opt. Soc. Amer. B 10, 208–408 (1993) on Development and Applications of Materials Exhibiting Photonic Band Gaps.

    Google Scholar 

  2. See the proceedings of the NATO ARW, Photonic Band Gaps and Localization, ed. C. M. Soukoulis, (Plenum, New York, 1993).

    Google Scholar 

  3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).

    Article  ADS  Google Scholar 

  4. C. T. Chan, K. M. Ho, and C. M. Soukoulis, Europhys. Lett. 16, 563 (1991).

    Article  ADS  Google Scholar 

  5. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).

    Article  ADS  Google Scholar 

  6. H. S. Sozuer, J. W. Haus, and R. Inguva, Phys. Rev. B45, 13962 (1992)

    ADS  Google Scholar 

  7. H. S. Sozuer, J. W. Haus, and R. Inguva, J. Opt. Soc. Am. B10, 296 (1993).

    ADS  Google Scholar 

  8. P. R. Villeneuve and M. Piche, Phys. Rev. B46, 4969 (1992)

    ADS  Google Scholar 

  9. P. R. Villeneuve and M. Piche, Phys. Rev. B46, 4973 (1992).

    ADS  Google Scholar 

  10. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Appl. Phys. Lett. 61, 495 (1992).

    Article  ADS  Google Scholar 

  11. M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, Opt. Commun. 80, 199 (1991)

    Article  ADS  Google Scholar 

  12. M. Plihal and A. A. Maradudin, Phys. Rev. B44, 8565 (1991).

    ADS  Google Scholar 

  13. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).

    Article  ADS  Google Scholar 

  14. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. B44, 13772 (1991).

    ADS  Google Scholar 

  15. S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, Phys. Rev. Lett. 67, 2017 (1991).

    Article  ADS  Google Scholar 

  16. W. Robertson, G. Arjavalingan, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Phys. Rev. Lett. 68, 2023 (1992).

    Article  ADS  Google Scholar 

  17. J. B. Pendry and A. MacKinnon, Phys. Rev. Lett. 69, 2772 (1992)

    Article  ADS  Google Scholar 

  18. J. B. Pendry, J. Mod. Opt. 41, 209 (1994).

    Article  ADS  Google Scholar 

  19. M. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan and K. M. Ho, Phys. Rev. B48, 14121 (1993).

    ADS  Google Scholar 

  20. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Solid State Commun. 89, 413 (1994).

    Article  ADS  Google Scholar 

  21. E. Ozbay, E. Michel, G. Tuttle, M. Sigalas, R. Biswas, and K. M. Ho, Appl. Phys. Lett. 64, 2059 (1994).

    Article  ADS  Google Scholar 

  22. E. Ozbay, E. Michel, G. Tuttle, R. Biswas, and K. M. Ho, J. Bostak, and D. M. Bloom, Opt. Lett. 19, 1155 (1994).

    ADS  Google Scholar 

  23. M. M. Sigalas, C. M. Soukoulis, C. T. Chan and K. M. Ho, Phys. Rev. B49, 11080 (1994).

    ADS  Google Scholar 

  24. A.R. McGurn and A.A. Maradudin, Phys. Rev. B48, 17576 (1993).

    ADS  Google Scholar 

  25. D. R. Smith, S. Shultz, N. Kroll, M. Sigalas, K. M. Ho and C. M. Soukoulis, Appl. Phys. Lett. 65, 645 (1994).

    Article  ADS  Google Scholar 

  26. J. D. Jackson, Classical Electrodynamics, (Wiley, New York, 1975).

    MATH  Google Scholar 

  27. C. M. Soukoulis, I. Webman, G. S. Grest, and E. N. Economou, Phys. Rev. B26, 1838 (1982).

    ADS  Google Scholar 

  28. A. MacKinnon and B. Kramer, Z. Phys. B53, 1 (1983).

    Article  ADS  Google Scholar 

  29. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, Phys. Rev. B50, 1945 (1994).

    ADS  Google Scholar 

  30. R. Pettit, editor, Electromagnetic Theory of Gratings, (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  31. W. Lamb, D. M. Wood, and N. W. Ashcroft, Phys. Rev. B21, 2248 (1980).

    ADS  Google Scholar 

  32. E. N. Economou and M. M. Sigalas, Phys. Rev. B48, 13434 (1993).

    ADS  Google Scholar 

  33. N. Stefanou and A. Modinos, J. Phys.:Condens. Matter 3, 8135 (1991).

    Article  ADS  Google Scholar 

  34. H. S. Sozuer and J. W. Haus, J. Opt. Soc. Am. B10, 296 (1993)

    ADS  Google Scholar 

  35. H. S. Sozuer and J. P. Dowling, J. Mod. Opt. 41, 231 (1994).

    Article  ADS  Google Scholar 

  36. E. Yablonovitch (private communication).

    Google Scholar 

  37. E. D. Palik, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, London, 1985), p. 434.

    Google Scholar 

  38. P. Sheng, B. White, Z.-Q. Zhang, and G. Papanicolaou, Photonic Band Gaps and Localization, ed. C. M. Soukoulis, (Plenum, New York, 1993)

    Google Scholar 

  39. P. Sheng, B. White, Z.-Q. Zhang, and G. Papanicolaou, Phys. Rev. B34, 4757 (1986).

    MathSciNet  ADS  Google Scholar 

  40. J.M. Prigerio, J. Rivory and P. Sheng, Optics Commun. 98, 231 (1993).

    Article  ADS  Google Scholar 

  41. A.R. McGurn, K.T. Christensen, F.M. Mueller, and A.A. Maradudin, Phys. Rev. B47, 13120 (1993).

    ADS  Google Scholar 

  42. A. Kondilis and P. Tzanetakis, Phys. Rev. B46, 15426 (1992).

    ADS  Google Scholar 

  43. C.T. Chan, Q.L. Yu and K.M. Ho, Phys. Rev. B (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sigalas, M., Soukoulis, C.M., Chan, C.T., Ho, K.M. (1996). Photonic Band Gap Structures: Studies of the Transmission Coefficient. In: Soukoulis, C.M. (eds) Photonic Band Gap Materials. NATO ASI Series, vol 315. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1665-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1665-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7245-8

  • Online ISBN: 978-94-009-1665-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics