Skip to main content

Phosphodiesterase Inhibitors

  • Chapter
  • 34 Accesses

Part of the book series: Developments in Critical Care Medicine and Anesthesiology ((DCCA,volume 31))

Abstract

Phosphodiesterase, a ubiquitous enzyme in biologic systems, functions to terminate the actions of cyclic 3′,5′-nucleotides (i.e., cyclic AMP) by catalyzing its hydrolysis (1,2). Phosphodiesterase enzymes in the cardiovascular system have different substrate specificities, kinetic characteristics, and responses to pharmacologic agents that inhibit phosphodiesterases (1,2). Aminophylline, the phosphodiesterase inhibitor most clinicians are familiar with, has other effects that include interfering with adenosine metabolism. The newer cyclic AMP specific phosphodiesterase (PDE) inhibitors (also called Fraction III or low-Km cyclic AMP) are nonsympathomimetic agents that can produce both positive inotropic effects and vasodilation independent of β1-adrenergic receptor stimulation (1,2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beavo JA, Reifsnyder DH. Primary sequence of cyclic nucleotide phosphodiesterase enzymes and the design of selective inhibitors. TIPS 11:150–155, 1990

    PubMed  CAS  Google Scholar 

  2. Evans DB. Overview of cardiovascular physiologic and pharmacologic aspects of selective phosphodiesterase peak III inhibitors. Am J Cardiol. 63:9A–11A, 1989

    Article  PubMed  CAS  Google Scholar 

  3. Rasmussen H. The calcium messenger system. N Engl J Med 314:1094–1101, 1986

    Article  PubMed  CAS  Google Scholar 

  4. Rasmussen H. The calcium messenger system. N Engl J Med 314:1164–70, 1986

    Article  PubMed  CAS  Google Scholar 

  5. Royster RL. Intraoperative administration of inotropes in cardiac surgery patients. J Cardiothorac Anesth 4(55):17–28, 1990

    Article  Google Scholar 

  6. Katz AM. Cyclic adenosine monophosphate effects on the myocardium: a man who blows hot and cold with one breath. J Am Coll Cardiol 2:143–9, 1983

    Article  PubMed  CAS  Google Scholar 

  7. Trautwein W, Hescheler J. Regulation of cardiac L-type calcium current by phosphorylation and G proteins. Annu Rev Physiol 52:257–74, 1990

    Article  PubMed  CAS  Google Scholar 

  8. Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and β-adrenergic receptor density in failing human hearts. N Engl J Med 307:205–211, 1982

    Article  PubMed  CAS  Google Scholar 

  9. Bristow MR, Port JD, Hershberger RE, et al. The β-adrenergic receptor-adenylate cyclase complex as a target for therapeutic intervention in heart failure. Eur Heart J 10(suppl B):45–54, 1989

    PubMed  Google Scholar 

  10. Bristow MR, Hershberger RE, Port JD, et al. β-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 82(suppl):I12–I25, 1990

    Article  PubMed  CAS  Google Scholar 

  11. Bristow MR, Sandoval AB, Gilbert EM, et al. Myocardial a- and β-adrenergic receptor in heart failure: is cardiac-derived norepinephrine the regulatory signal? Eur Heart J 9:35–40, 1988

    PubMed  CAS  Google Scholar 

  12. Schwinn DA, Leone BJ, Spahn DR, Chesnut LC, Page SO, McRae RL, Liggett SB. Desensitization of myocardial β-adrenergic receptors during cardiopulmonary bypass. Evidence for early uncoupling and late downregulation. Circulation 84:2559–2567, 1991

    PubMed  CAS  Google Scholar 

  13. Port JD, Gilbert EM, Larrabee P, et al. Neurotransmitter depletion compromises the ability of indirect acting amines to provide inotropic support in the failing human heart. Circulation 81:929–938, 1990

    Article  PubMed  CAS  Google Scholar 

  14. Benotti JR, Grossman W, Braunwald E, et al. Hemodynamic assessment of amrinone. N Engl J Med 299:1373–1377, 1987

    Article  Google Scholar 

  15. Levy JH, Ramsay J, Bailey JM: Pharmacokinetics and pharmacodynamics of phosphodiesterase-III inhibitors. J Cardiothorac Anesth 6(Suppl 5):7–11, 1990

    Article  Google Scholar 

  16. Baim DS, McDowell AV, Cherniles J, Monrad ES, Parker JA, Edelson J, Braunwald E, Grossman W. Evaluation of a new bipyridine inotropic agent — milrinone — in patients with severe congestive heart failure. N Engl J Med 309:748–756, 1983

    Article  PubMed  CAS  Google Scholar 

  17. Fitzpatrick PG, Cinquegrani MP, Vakiener AR, et al. Hemodynamic and regional blood flow response to milrinone in patients with severe congestive heart failure: a dose-ranging study. Am Heart J 114:97–105, 1987

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez M, Desager J-P, Jacquemart J-L, Chenu P, Muller T, Installe E. Efficacy of enoximone in the management of refractory low output states following cardiac surgery. J Cardiothorac Anesth 2:409–418, 1988

    Article  PubMed  CAS  Google Scholar 

  19. Benotti, JR, Grossman W, Braunwald E, et al. Effects of amrinone on myocardial energy metabolism and hemodynamics in patients with severe congestive heart failure due to coronary artery disease. Circulation 62:28–36, 1980

    PubMed  CAS  Google Scholar 

  20. Gage J, Rutman H, Lucido D, et al. Additive effects of dobutamine and amrinone on myocardial contractility and ventricular performance in patients with severe heart failure. Circulation 74:367–373, 1986

    Article  PubMed  CAS  Google Scholar 

  21. Robinson RJS, Tchervenkov C. Treatment of low cardiac output after aortocoronary artery bypass surgery using a combination of norepinephrine and amrinone. J Cardiothorac Anesth 3:229–233, 1987

    Article  Google Scholar 

  22. Olsen KH, Kluger J, Fieldman A. Combination high dose amrinone and dopamine in the management of moribund cardiogenic shock after open heart surgery. Chest 94:503–506, 1988

    Article  PubMed  CAS  Google Scholar 

  23. Boldt J, Kling D, Moosdorf R, Hempelmann G. Enoximone treatment of impaired myocardial function during cardiac surgery: combined effects with epinephrine. J Cardiothorac Anesth 4:462–468, 1990

    Article  PubMed  CAS  Google Scholar 

  24. Vincent JL, Leon J, Melot BC, Kahn RJ. Addition of phosphodiesterase inhibitors to adrenergic agents in acutely ill patients. Intl J Cardiology 28:S7–S11, 1990

    Article  Google Scholar 

  25. Uretsky BF, Hua J. Combined intravenous pharmacotherapy in the treatment of patients with decompensated congestive heart failure. Amer Heart J, June, 1991

    Google Scholar 

  26. Levy JH, Salmenpera MT, Meyer K, Harrison D. Phosphodiesterase inhibitors dilate human internal mammary artery in vitro. Anesthesiology A1118(S), 1991

    Google Scholar 

  27. Levy JH, Bailey JM. Effects of amrinone on vascular resistance and capacitance in humans. Chest 105: 62–64, 1994

    Article  PubMed  CAS  Google Scholar 

  28. Silver PJ, Lepore RE, O’Connor B, et al. Inhibition of the low Km cyclic AMP phosphodiesterase and activation of the cyclic AMP systsem in vascular smooth muscle by milrinone. J Pharmacol Exp Ther 247:34–42, 1988

    PubMed  CAS  Google Scholar 

  29. Edelson J, Stroshane R, Benziger DP, et al. Pharmacokinetics of the bipyridines amrinone and milrinone. Circulation. 73(suppl III): 145–152, 1986

    Google Scholar 

  30. Bailey JM, Levy JH, Rogers G, Szlam F, Hug CC. Pharmacokinetics of amrinone during cardiac surgery. Anesthesiology 75:961–968, 1991

    Article  PubMed  CAS  Google Scholar 

  31. Bailey JM, Levy JH, Kikura M, Szlam F, Hug CC. Pharmacokinetics of milrinone: during cardiac surgery. Anesthesiology 81: 616–622, 1994

    Article  PubMed  CAS  Google Scholar 

  32. Borow KM, Come PC, Neumann A, Bairn DS, Braunwald E, Grossman W. Physiologic assessment of the inotropic, vasodilator and afterload reducing effects of milrinone in subjects without cardiac disease. Am J Cardiol. 55:1204–1209,1985

    Article  PubMed  CAS  Google Scholar 

  33. Jaski BE, Fifer MA, Wright RF, Braunwald E, Colucci WS. Positive inotropic and vasodilator actions of milrinone in patients with severe congestive heart failure: dose-response relationships and comparison to nitroprusside. J Clin Invest. 75:643–649, 1985

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Levy, J.H. (1996). Phosphodiesterase Inhibitors. In: Stanley, T.H., Bailey, P.L. (eds) Anesthesiology and the Cardiovascular Patient. Developments in Critical Care Medicine and Anesthesiology, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1622-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1622-7_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7224-3

  • Online ISBN: 978-94-009-1622-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics