Skip to main content

The synthesis of titanium nitride and titanium carbonitride by self-propagating combustion

  • Chapter
The Chemistry of Transition Metal Carbides and Nitrides

Abstract

The self-propagating high-temperature synthesis of titanium nitride (TiN)1−x and titanium carbonitride (TiC x N1−x ) from Ti metal is investigated to provide insight into the mechanism of the reaction. For the synthesis of TiN, the extent of reaction, expressed as percent conversion or nitrogen uptake, is strongly dependent on the composition and porosity of the reacting pellets and the pressure of nitrogen gas. The total nitrogen uptake at 1 bar pressure is a maximum at about 58% relative density. X-ray diffraction (XRD) analysis shows that regardless of porosity, the surface of the samples is titanium nitride (TiN1−x ) of rock salt structure. The effects of nitrogen gas pressure and diluent (TiN) content on the synthesis of titanium nitride is investigated in the pressure range of 0.1 to 1.4 MPa. For the pure titanium samples, increasing the pressure of nitrogen leads to a decrease in nitrogen uptake. An increase in the conversion can only be achieved if the amount of diluent is above 40 wt%, with full conversion attained at 60 wt% diluent at nitrogen pressures of 0.5 MPa.

In the combustion synthesis of titanium carbonitride from a mixture of pressed titanium and carbon powders the nitrogen uptake of the undiluted samples is only about 40% of the maximum theoretical uptake. Addition of TiN as diluent increases the nitrogen uptake to 100% at 0.5 MPa nitrogen. XRD analysis demonstrates that the structure of all the products regardless of dilution or nitrogen pressure is the rock salt phase. SEM of the reacted samples reveals that the porosity of the samples increases with increasing carbon content. Analysis shows that if the amount of carbon is less than 0.4 mol/mol of the reactant, then carbon causes no significant effect on nitrogen uptake. At higher carbon contents the nitrogen uptake increases to about 80% of its theoretical maximum value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Anttila, J. Raisanen and J. Keinonen. J. Appl. Phys. Letters, 42, 498 (1983).

    Article  CAS  Google Scholar 

  2. D.D. Harbuck, C.F. Davidson and M.B. Shirt. J. Metals, 38, 47 (1986).

    CAS  Google Scholar 

  3. L.E. Toth. In: Transition Metal Carbides and Nitrides, (Academic Press, New York, NY, 1971), 12.

    Google Scholar 

  4. L. Maya. In: Better Ceramics Through Chemistry, II. C.J. Binker, D.E. Clark and D.R. Ulrich, Eds, (Materials Research Society, Pittsburgh, PA, 1986), 401–406.

    Google Scholar 

  5. V.D. Parkhomenko, G.N. Serdyuk and Yu.I. Krasnokutskii. Phys. Chem. Mat. Process. (Russian) 5, 78 (1986).

    Google Scholar 

  6. D. Seyfeth and G. Mignani. Government Report Announcement Index (U.S.), Report 1987 (Abstr. No. 827,109), Order No. AD-A188357, 88(11), p. 10 (1988).

    Google Scholar 

  7. A.V. Bolotov, V.N. Musolin, A.V. Kolensnikov and M.N. Filkov. Sixth Symposium on Plasma Chemistry, (University of Sherbrooke, Dept. of Chem. Eng., Montreal, PQ, Canada), 1, 237 (1983).

    CAS  Google Scholar 

  8. M. Yoshimura, M. Nishioka and S. Somiya. J. Mat. Sci. Lett., 6, 1463 (1987).

    Article  CAS  Google Scholar 

  9. V.D. Lyubimov, G.K. Moiseev and T.A. Timoshchuk. Soviet Inorg. Chem. (Russian) 21, 1321 (1985).

    CAS  Google Scholar 

  10. O. Matsumoto and H. Taki. Proceedings of The Electrochemical Society of Japan; Proc. Symp. High Temp. Mater. Chem. 4; Honolulu, HI, October 1987. Z.A. Munir, H. Tagawa and D. Cubicciotti, Eds, (Pennington, N.J.) 88, 486 (1988).

    Google Scholar 

  11. H. Yoshimura. Japanese Patent 17,471,1986.

    Google Scholar 

  12. I. Zalite. Summaries of Reports — Conference of Young Scientists for the Institute of Inorganic Chemistry. (Academy of Science of the Latvian SSR. (Russian), 1976) 22–23.

    Google Scholar 

  13. P. Grieveson. Proc. Br. Ceram. Soc, 8, 137 (1967).

    Google Scholar 

  14. K.N. Portnoi and Yu.V. Levinskii. Russ. J. Phys. Chem., 37, 2627 (1963).

    CAS  Google Scholar 

  15. A.N. Zelikman and N.N. Govorits. J. App. Chem., 23, 727 (1950).

    CAS  Google Scholar 

  16. J.B. Holt and Z.A. Munir. J. Mat. Sci., 21, 251 (1986).

    Article  CAS  Google Scholar 

  17. A.G. Merzhanov and I.P. Borovinskaya. Dokl. Akad. Nauk. SSR (Chem.), 204, 429 (1972).

    Google Scholar 

  18. A.I. Kirdyashkin, Yu.M. Maksimov and E.A. Nekrasov. Comb. Explo. Shock Waves, 17, 33 (1981).

    Article  CAS  Google Scholar 

  19. O. Yamada, Y. Myamoto and M. Koizumi. J. Am. Ceram. Soc., 70, C206 (1987).

    Article  Google Scholar 

  20. S.L. Kharatyan, Y.S. Grigorev and A.G. Merzhanov. Comb. Explo. Shock Waves, 11, 21 (1975).

    Article  Google Scholar 

  21. Z.A. Munir. S. Deevi and M. Eslamloo-Grami. High Temp.-High Press., 20, 19 (1988).

    CAS  Google Scholar 

  22. M. Eslamloo-Grami and Z.A. Munir. J. Am. Ceram. Soc, 73, 1235 (1990).

    Article  CAS  Google Scholar 

  23. M. Eslamloo-Grami and Z.A. Munir. J. Am. Ceram. Soc, 73, 2222 (1990).

    Article  CAS  Google Scholar 

  24. A.B. Avakian, A.R. Bagramian, I.P. Borovinskaya, S.L. Grigorian and A.G. Merzhanov. In: Combustion Process in Chemical Technology and Metallurgy, Chernogolovka, 125 (1975).

    Google Scholar 

  25. Z.A. Munir and U. Anselmi-Tumburini. Mater. Sci. Rep., 3, 277 (1989).

    Article  CAS  Google Scholar 

  26. A.G. Merzhanov, I.P. Borovinskaya and V.M. Maslow. USSR Pat. No. 556 110, (1977).

    Google Scholar 

  27. V. Hlavacek. Ceram. Bull., 70, 240 (1991).

    CAS  Google Scholar 

  28. G.V. Samsonov. Akad. Nauk, Kiev. (Russian), (1969).

    Google Scholar 

  29. A.G. Merzhanov, LP. Borovinskaya and Y.E. Volodin. Dokl. Phys. Chem., 204, 833 (1973).

    Google Scholar 

  30. A.F. Filonenko. Comb. Process. Chem. Technol. Metall., Chernogolovka, 258 (1975).

    Google Scholar 

  31. A.K. Filonenko and V.I. Vershennikov. Combust. Explos. Shock Waves, 11, 301 (1976).

    Article  Google Scholar 

  32. G.G. Petrov. Combust. Explos. Shock Wave, 11, 309 (1975).

    Article  Google Scholar 

  33. B.J. Holt. Indust. Res. Develop., 4, 88 (1983).

    Google Scholar 

  34. LP. Borovinskaya and V.E. Loryan. Sov. Powder Metall. Mater., Parts and Coating, 191, 851 (1978).

    Article  Google Scholar 

  35. K. Hirao, Y. Miyamoto and M. Koizumi. J. Soc. Mater. Sci. Jpn., 36, 12 (1987).

    Article  CAS  Google Scholar 

  36. K. Hirao, Y. Miyamoto and M. Koizumi. J. Am. Ceram. Soc., 69, 4 (1986).

    Google Scholar 

  37. Z.A. Munir and B.J. Holt. J. Mater. Sci., 22, 710 (1987).

    Article  CAS  Google Scholar 

  38. M. Glassman, P.D. Ronney, P. Takahashi and K. Brezinsky. Chem. Phys. Process Combust., 39, 1 (1987).

    Google Scholar 

  39. H. Kudo and O. Odawara. J. Mater. Sci., 24, 4030 (1989).

    Article  CAS  Google Scholar 

  40. S. Deevi and Z.A. Munir. J. Mater. Res., 5, 2177 (1990).

    Article  CAS  Google Scholar 

  41. K. Hirao, Y. Miamoto and H. Koizumi. In: Advances in Ceramics: 21, Ceramic Powder Science, G.L. Messing, K.S. Mazdiyasni, J.W. McCauley and R.A. Haber. Eds. (American Ceramic Society, Westerville, OH 1987), 289–300.

    Google Scholar 

  42. J.L. Murray. In: Alloy Phase Diagrams, ASM Handbook, Vol. 3 (ASM International, Metals Park, Ohio) 1992, p. 2117.

    Google Scholar 

  43. M. Eslamloo-Grami and Z.A. Munir. J. Mater. Res., 9, 431 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Eslamloo-Grami, M., Munir, Z.A. (1996). The synthesis of titanium nitride and titanium carbonitride by self-propagating combustion. In: Oyama, S.T. (eds) The Chemistry of Transition Metal Carbides and Nitrides. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1565-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1565-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7199-4

  • Online ISBN: 978-94-009-1565-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics