Skip to main content

The Myth of the Intuitionistic “OR”

  • Chapter
Truth or Consequences

Abstract

There is a widespread impression that there is a special intuitionistic sense of disjunction, stronger than the classical sense. (There is a similar belief in a special intuitionistic sense of existential quantification; the fundamental issues involved are the same, as I hope to bring out.) The impression is mistaken—on the interpretation most favorable to the idea that there is a special intuitionistic disjunction, intuitionistic disjunction is weaker than classical—and it is philosophically pernicious. Early work by Belnap and some of his colleagues helps to show this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Belnap, N. and Thomason, R. (1963): “A Rule-Completeness Theorem,” Notre Dame Journal of Formal Logic 4, pp. 39–43.

    Article  Google Scholar 

  • Belnap, N. and Thomason, R., H. Leblanc, and Thomason, R.: “On Not Strengthening Intuitionistic Logic,” Notre Dame Journal of Formal Logic 4, pp. 313–320.

    Google Scholar 

  • Benacerraf, R (1965): “What Numbers Could Not Be,” Philosophical Review 74, pp. 47–73; reprinted in Benacerraf and Putnam, pp. 272–294.

    Article  Google Scholar 

  • Benacerraf, R, and Putnam, H. (eds.) (1983): Philosophy of Mathematics: selected readings, (second edition) Cambridge (Cambridge U.P.)

    Google Scholar 

  • Chellas, B. (1980): Modal Logic, Cambridge (C.U.P.).

    Google Scholar 

  • Dummett, M. (1977): The Elements of Intuitionism, Oxford (O.U.P.).

    Google Scholar 

  • Esakia, L. (1979): “On the Variety of Grzegorczyk Algebras” (in Russian), in Studies in Nonclassical Logics and Set Theory (Russian), Moscow (Nauka), pp. 257–287; rev. Mathematical Reviews 81j:03097.

    Google Scholar 

  • Fitch, R (1942): “A Basic Logic Fitch’s Basic Logic,” Journal of Symbolic Logic 7, pp. 105–114.

    Article  Google Scholar 

  • Fitch, R (1952): Symbolic Logic: an introduction, New York (Ronald).

    Google Scholar 

  • Fitch, R (1966): “Natural Deduction Rules for Obligation,” American Philosophical Quarterly 3, pp. 27–38.

    Google Scholar 

  • Fogelin, R. (1968): “Wittgenstein and Intuitionism,” American Philosophical Quarterly 5, pp. 267–264.

    Google Scholar 

  • Gentzen, G. (1933): “On the Relation Between Classical and Intuitionistic Arithmetic”; first published (in English) in M. Szabo, ed., Collected Papers of Gerhart Gentzen/, Amsterdam (North-Holland), 1969.

    Google Scholar 

  • Gödel, K. (1933): “On Intuitionistic Arithmetic and Number Theory,” Ergebnisse eines mathematischen Kolloquiums 4, pp. 34–38; Eng. tr. in M. Davis, ed., The Undecidable, Hewlett NY (Raven).

    Google Scholar 

  • Gödel, K. (1933a): “An Interpretation of the Intuitionistic Sentential Logic,” Ergebnisse eines mathematischen Kolloquiums 4, pp. 39–40; Eng. tr. in J. Hintikka, ed. Philosophy of Mathematics, Oxford (O.U.P.) 1969, pp. 128–129.

    Google Scholar 

  • Goldblatt, R. (1978): “Arithmetical necessity, Provability and Intuitionistic Logic,” Theoria XLIV, pp. 38–46.

    Google Scholar 

  • Goodman, N. (1984): “The Knowing Mathematician,” Synthese 60, pp. 21–38.

    Article  Google Scholar 

  • Goodman, N. (1985): “Epistemic Arithmetic is a Conservative Extension of Intuitionistic Arithmetic,” Journal of Symbolic Logic 49, pp. 192–203.

    Google Scholar 

  • Jennings, R. (1986): “The Punctuational Sources of the Truth-Functional “Or”,” Philosophical Studies 50, pp. 237–257.

    Article  Google Scholar 

  • Kripke, S. (1963): “Semantical Considerations on Modal Logic,” Acta Philosophica Fennica XVI, pp. 83–94.

    Google Scholar 

  • Kripke, S. (1965): “Semantic Analysis of Intuitionistic Logic I,” in J. Crossley and M. Dummett, eds., Formal Systems and Recursive Functions, Amsterdam (North-Holland), pp. 92–130.

    Chapter  Google Scholar 

  • Myhill, J. (1950): “A Complete Theory of Natural, Rational and Real Numbers,” Journal of Symbolic Logic 15, pp. 185–196.

    Article  Google Scholar 

  • Nelson, D. (1949): “Constructible Falsity,” Journal of Symbolic Logic 14, pp. 16–26.

    Article  Google Scholar 

  • Parsons, C. (1977): “What is the Iterative Conception of Set?” in R. Butts and J. Hintikka, eds., Logic, Foundations of Mathematics, and Computability Theory, pp. 335–367; repr. in Parsons (1983a), pp. 268–297, and in Benacerraf and Putnam, pp. 503–529.

    Google Scholar 

  • Parsons, C. (1981): “Modal Set Theories (abstract),” Journal of Symbolic Logic 46, pp. 683–4.

    Google Scholar 

  • Parsons, C. (1983): “Sets and Modality,” in Parsons ( 1983a ), pp. 298–341.

    Google Scholar 

  • Parsons, C. (1983a): Mathematic in Philosophy, Ithaca (Cornell U.P.).

    Google Scholar 

  • Putnam, H. (1978): Meaning and the Moral Sciences, London (Routledge).

    Google Scholar 

  • Robinson, A. (1965): “Formalism’64,” in Y. Bar-Hillel, ed., Logic, Methodology, and Philosophy of Science: Proceedings of the 1964 Conference, Amsterdam (North-Holland), pp. 228–246.

    Google Scholar 

  • Shapiro, S. (1985): “Epistemic and Intuitionistic Arithmetic,” in S. Shapiro, ed.Intensional Mathematics, Amsterdam (NorthHolland), pp. 11–45.

    Chapter  Google Scholar 

  • Smorynski, C. (1973): “Applications of Kripke Models,” in A. Troelstra, ed., Metamathematical Investigations of Intuitionistic Arithmetic and Analysis (LNM # 344), Berlin (Springer-Verlag), pp. 324–391.

    Chapter  Google Scholar 

  • Van Fraassen, B. C. (1974): “The Labyrinth of Quantum Logic,” in R. Cohen and M. Wartofsky, eds., Logical and Epistemological Problems in Contemporary Physics (Boston Studies in the Philosophy of Science 13 ), Dordrecht (Reidel); repr. in C. Hooker, ed., The Logico-Algebraic Approach to Quantum Mechanics I, Dordrecht (Reidel), 1975.

    Google Scholar 

  • Van Fraassen, B. C. (1975): “Semantic Analysis of Quantum Logic,” in C. Hooker, ed., Contemporary Research in the Foundations and Philosophy of Quantum Theory, Dordrecht (Reidel).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hazen, A.P. (1990). The Myth of the Intuitionistic “OR”. In: Dunn, J.M., Gupta, A. (eds) Truth or Consequences. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0681-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0681-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6791-1

  • Online ISBN: 978-94-009-0681-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics