Skip to main content

Virus induced cancer: The lesson of Epstein—Barr virus

  • Chapter
Cancer in Transplantation: Prevention and Treatment

Part of the book series: Transplantation and Clinical Immunology ((TRAC,volume 27))

  • 60 Accesses

Abstract

Virally induced tumors provide the strongest case of host surveillance against neoplastic cells and their precursors. There is now substantial evidence that Epstein-Barr virus (EBV), hepatitis-B and C viruses (HBV and HCV), several types of papilloma viruses (HPV), Human Herpesvirus type 8 (HHV8) and human T-cell leukemia-lymphoma virus type I (HTLV I) and type II are responsible for approximately 15–20% of the total cancer incidence in the world. These viruses are widespread in populations where the associated diseases are seen at the highest incidence. In the vast majority of cases primary infection is either asymptomatic or is accompanied by benign proliferations of virus infected cells that often appear in concomitance with disturbances of the host immune responses and tend to regress spontaneously once full immunocompetence is restored. This, together with the observation that progression to malignancy occurs after long latency periods, and that the tumors are usually monoclonal, indicates that none of these viruses is by itself tumorigenic. An important aspect of viral oncogenesis is, therefore, the establishment of persistent asymptomatic infection where the transforming potential of the virus is controlled by a combination of cellular control mechanisms that regulate the expression of viral genes, and by strong immune responses that prevent the proliferation of virus infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henle G, Henle W, Diehl V. Relation of a Burkitt tumor associated herpes-type virus to infectious mononucleosis. Proceedings of the National Academy of Sciences USA 1968; 59:94–101.

    Article  CAS  Google Scholar 

  2. Hanto DW, Gajl-Peczalska KJ, Frizzera G et al. Epstein-Barr virus (EBV) induced polyclonal and monoclonal B-cell lymphoproliferative diseases occurring after renal transplantation. Ann. Surg. 1983; 198: 356–369.

    Article  PubMed  CAS  Google Scholar 

  3. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitťs lymphoma. Lancet 1964; i: 702–703.

    Article  Google Scholar 

  4. Wolf H, zur Hausen H, Becker V. EB-viral genomes in epithelial nasopharyngeal carcinoma cells. Nature (Lond.) 1973; 244: 245–247.

    CAS  Google Scholar 

  5. Herbst H, Dallenbach F, Hummel M et al. Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells. Proceedings of the National Academy of Sciences USA 1991; 88: 4766–4770.

    Article  CAS  Google Scholar 

  6. Herbst H, Dallenbach F, Hummel M et al. Epstein-Barr virus DNA and latent antigens in Ki-1 (CD30)-positive Anaplastic Large Cell lymphoma. Blood 1991; 78: 2666–2673.

    PubMed  CAS  Google Scholar 

  7. Anagnostopoulos I, Herbst H, Niedobetek G, Stein H. Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1 positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood 1989; 74: 810–816.

    PubMed  CAS  Google Scholar 

  8. Pallesen G, Hamilton-Dutoit SJ, Zhou X. The association of Epstein-Barr virus (EBV with T cell lymhpoproliferations and Hodgkin’s disease: Two new developments in the EBV field. Advances in Cancer Research 1993; 62: 180–239.

    Article  Google Scholar 

  9. Harabuchi Y, Yamanaka N, Kataura A et al. Epstein-Barr virus in nasal T-cell lymphomas inpatients with lethal midline granuloma. Lancet 1990; 335: 128–130.

    Article  PubMed  CAS  Google Scholar 

  10. Leyvraz S; Henle W, Chahinian AP et al. Association of Epstein-Barr virus with thymic carcinoma. New England Journal of Medicine 1985; 312: 1296–1299.

    Article  PubMed  CAS  Google Scholar 

  11. Imai S, Koizumi S, Sugiura M et al. Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection proteins. Proceedings of the National Academy of Sciences USA 1994; 91: 9131–9135.

    Article  CAS  Google Scholar 

  12. Lee ES, Locker J, Nalesnik M et al. The association of Epstein-Barr virus with smoothmuscle tumors occurring after organ transplantation. New England Journal of Medicine 1995; 332: 19–25.

    Article  PubMed  CAS  Google Scholar 

  13. McClain KL, Leach CT, Jenson HB et al. Association of Epstein-Barr virus with leiomyosarcomas in young people with AIDS. New England Journal of Medicine 1995; 332: 12–18.

    Article  PubMed  CAS  Google Scholar 

  14. Rickinson AB, Rowe M, Hart IJ et al. T-cell-mediated regression of “spontaneous” and of Epstein-Barr virus-induced B cell transformation in vitro: Studies with cyclosporin A. Cell. Immunol. 1984; 87: 646–658.

    CAS  Google Scholar 

  15. Nemerow GR, Wolfert R, McNaughton MW, Cooper NR. Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). Journal of Virology 1985; 55: 347–351.

    PubMed  CAS  Google Scholar 

  16. Miller G, Lipman M. Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proceedings of the National Academy of Sciences USA 1973; 70: 190–194.

    Article  CAS  Google Scholar 

  17. Kieff E, Liebowitz D. Epstein-Barr virus and its replication. In: Fields B, Knipe D, ed. Virology, 2nd Edition. New York: Raven press, 1990: 1889–1920. vol 2).

    Google Scholar 

  18. Ehlin-Henriksson B, Manneborg-Sandlund A, Klein G. Expression of B-cell-specific markers in different Burkitt lymphoma subgroups. Int. J. Cancer 1987; 39: 211–218.

    Article  PubMed  CAS  Google Scholar 

  19. Rowe M, Rooney CM, Edwards CF, Lenoir GM, Rickinson AB. Epstein-Barr virus status and tumour cell phenotype in sporadic Burkit’s lymphoma. Int. J. Cancer 1986; 37: 367–373.

    Article  PubMed  CAS  Google Scholar 

  20. Robinson J, Smith D, Niederman J. Mitotic EBNA-positive lymphocytes in peripheral blood during infectious mononucleosis. Nature 1980; 287: 234–235.

    Google Scholar 

  21. Miyashita EM, Yang B, Lam KM, Crawford DH, Thorley-Lawson DA. A novel form of Epstein-Barr virus latency in normal B cells in vivo. Cell 1995.

    Google Scholar 

  22. Tierney RJ, Steven N, Young LS, Rickinson AB. Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. Journal of Virology 1994; 68: 7374–7385.

    PubMed  CAS  Google Scholar 

  23. Chen F, Zou JZ, di Rienzo L et al. A subpopulation of latently EBV infected normal B-cells resembles Burkitt lymphoma (BL) in expressing EBNA1 but not EBNA2 or LMP1. Journal of Virology 1995; 1995: 3752–3758.

    Google Scholar 

  24. Thomas J, Allday M, Crawford D. Epstein-Barr virus-associated lymphoproliferative disorders in immunocompromised individuals. Advances in Cancer Research 1991; 57: 329–380.

    Article  PubMed  CAS  Google Scholar 

  25. Rowe DT, Rowe M, Evan GI, Wallace LE, Farrell PJ, Rickinson AB. Restricted expression of EBV latent genes and T-lymphocyte-detected membrane antigen in Burkitťs lymphoma cells. EMBO J. 1986; 5: 2599–2607.

    PubMed  CAS  Google Scholar 

  26. Rowe M, Rowe DT, Gregory CD et al. Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitťs lymphoma. European Molecular Biology Organization Journal 1987; 6: 2743–2751.

    CAS  Google Scholar 

  27. Sample J, Brooks L, Sample C et al. Restricted Epstein-Barr virus protein expression in Burkitt lymphoma is due to a different Epstein-Barr Nuclear Antigen-1 transcriptional initiation site. Proceedings of the National Academy of Sciences USA 1991; 88: 6343–6347.

    Article  CAS  Google Scholar 

  28. Lear AL, Rowe M, Kurilla MG et al. The Epstein-Barr virus (EBV) nuclear antigen 1 BamHI F promoter is activated on entry of EBV-transformed B cells into the lytic cycle. Journal of Virology 1992; 66: 7461–7468.

    PubMed  CAS  Google Scholar 

  29. Masucci MG, Contreras-Salazar B, Ragnar E et al. 5-Azacytidine up-regulates the expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) through EBNA-6 and latent membrane protein in the Burkit’s lymphoma line Rael. J. Virol. 1989; 63: 3135–3141.

    PubMed  CAS  Google Scholar 

  30. Jansson A, Masucci MG, Rymo L. Methylation of discrete sites within the enhancer region regulates the activity of the EBV BamHI W promoter in Burkit’s lymphoma lines. Journal of Virology 1992; 66: 62–69.

    PubMed  CAS  Google Scholar 

  31. Hu LF, Minarovits J, Cao SL et al. Variable Expression of Latent Membrane Protein in Nasopharyngeal Carcinoma Can Be Related to Methylation Status of the Epstein-Barr Virus BNLF-1 5’-Flanking Region. J. Virol. 1991; 65(3): 1558–1567.

    PubMed  CAS  Google Scholar 

  32. Gregory CD, Murray RJ, Edwards CF, Rickinson AB. Down regulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein-Barr virus-positive Burkit’s lymphoma underlies tumour cell escape from virus-specific T cell surveillance. J. Exp. Med. 1988; 167: 1811–1824.

    Article  PubMed  CAS  Google Scholar 

  33. Herbst H, Trippelmann G, Anagnostopoulos I et al. Immunoglobulin and T cell receptor gene rearrangements in Hodgkin’s disease and Ki-1 positive anaplastic large cell lymphoma: dissociation between phenotype and genotype. Leukemia Research 1989; 13: 103–116.

    Article  PubMed  CAS  Google Scholar 

  34. Weiss LM, Movahed LA, Warnke RA, Sklar J. Detection of Epstein-Barr virus genome in Reed-Sternberg cells of Hodgkin’s Disease. New England Journal of Medicine 1989; 320: 502.

    Article  PubMed  CAS  Google Scholar 

  35. Deacon EM, Pallesen G, Niedobitek G et al. Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. Journal of Experimental Medicine 1993; 177: 339–349.

    Article  PubMed  CAS  Google Scholar 

  36. Pallesen G, Hamilton-Dutoit SJ, Zhou X. The association of Epstein-Barr virus (EBV with T cell lymhpoproliferations and Hodgkin’s disease: Two new developments in the EBV field. Advances in Cancer Research 1993; 62: 180–239

    Article  Google Scholar 

  37. Brooks L, Yao QY, Rickinson AB, Young LS. Epstein-Barr virus latent gene expression in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1 and LMP2 transcripts. Journal of Virology 1992; 66: 2689–697.

    PubMed  CAS  Google Scholar 

  38. Busson P, McCoy R, Sadler R, Gilligan K, Tursz T, Raab-Traub N. Consistent tanscription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. Journal of Virology 1992; 66: 3257–262.

    PubMed  CAS  Google Scholar 

  39. Fåhraeus R, Li-Fu H, Ernberg I et al. Expression of the Epstein-Barr virus genome in nasopharyngeal carcinoma. Int. J. Cancer 1988; 42: 329–38.

    Article  PubMed  Google Scholar 

  40. Niedobitek G, Herbst H. Epstein-Barr virus associated carcinomas. Epstein-Barr virus report 1994; 1:81–85.

    Google Scholar 

  41. Moss D, Rickinson A, Pope J. Long-term T-cell mediated immunity to Epstein-Barr virus in man: III. Activation of cytotoxic T cells in virus infected leukocyte cultures. International Journal of Cancer 1978; 23: 618–25.

    Article  Google Scholar 

  42. Rickinson AB, Moss DJ, Wallace LE et al. Long-term T-cell-mediated immunity to Epstein-Barr virus. Cancer Res. 1981; 41: 4216–221.

    PubMed  CAS  Google Scholar 

  43. Wallace LE, Rickinson AB, Rowe M, Epstein MA. Epstein-Barr virus-specific cytotoxic T-cell clones restricted through a single HLA antigen. Nature 1982; 297: 413–415.

    Article  PubMed  CAS  Google Scholar 

  44. Misko I, Pope D, Hütter R, Soszynski T, Kane R. HLA-DR antigen associated restriction of EBV specific cytotoxic T-cell colonies. International Journal of Cancer 1984; 33: 239–43.

    Article  CAS  Google Scholar 

  45. Gavioli R, Kurilla M, de Campos-Lima P-Oet al. Multiple HLA All restricted CTL epitopes of different immunogenicity in the Epstein-Barr virus (EBV) encoded nuclear antigen-4 (EBNA4). Journal of Virology 1993; 67: 1572–1578.

    PubMed  CAS  Google Scholar 

  46. Gavioli R, De Campos-Lima P-O, Kurilla MG, Kieff E, Klein G, Masucci MG. Recognition of the EBV encoded nuclear antigens EBNA-4 and EBNA-6 by HLA All restricted cytotoxic T-lymphocytes. Implications for the down-regulation of HLA Al1 in Burkit’s lymphoma. Proceedings of the National Academy of Sciences USA 1992; 89: 5862–5866.

    Article  CAS  Google Scholar 

  47. Khanna R, Borrows S, Kurilla M et al. Localisation of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: Implications for vaccine development. Journal of Experimental Medicine 1992; 176: 169–176.

    Article  PubMed  CAS  Google Scholar 

  48. Murray R, Kurilla M, Brooks J et al. Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive maligancies. Journal of Experimental Medicine 1992; 176: 157–168.

    Article  PubMed  CAS  Google Scholar 

  49. Khanna R, Jacob C, Borrows S et al. Expression of Epstein-Barr virus nuclear antigens in anti-IgM stimulated B cells following recombinant vaccinia infection and their recognition by human cytotoxic T cells. Immunology 1991; 74: 504–510.

    PubMed  CAS  Google Scholar 

  50. de Campos-Lima PO, Levitsky V, Brooks J et al. T cell responses and virus evolution: Epstein-Barr virus isolates from highly HLA All-positive populations carry mutations selectively involving anchor residues of Al1-restricted CTL epitopes. Journal of Experimental Medicine 1994; 179: 1297–1305.

    Article  PubMed  Google Scholar 

  51. de Campos-Lima P-O, Gavioli R, Zhang Q-J et al. HLA-All epitope loss isolates of Epstein-Barr virus from a highly All+ population. Science 1993; 260: 98–100.

    Article  PubMed  Google Scholar 

  52. Trivedi P, Masucci M, Wimberg G, Klein G. The Epstein-Barr virus encoded membrane protein LMP but not the nuclear antigen EBNA-1 induces rejection of transfected murine mammary carcinoma lines. International Journal of Cancer 1991; 48: 794–800.

    Article  CAS  Google Scholar 

  53. Levitskaya J, Coram M, Levitsky V et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr Virus nuclear antigen-1. Nature (London) 1995; 375: 685–688.

    Article  PubMed  CAS  Google Scholar 

  54. Starlz TE, Nalesnik MA, Porter KA et al. Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-A-steroid therapy. Lancet 1984; I: 583–587.

    Google Scholar 

  55. Papadopulos AB, Landanyi M, Emanuel D et al. Infusion of donor leukocytes to Epstein-Barr virus associated lymphoproliferative disorders after allogeneic bone marrow transplantation. New England Journal of Medicine 1994; 330: 1185–1191.

    Article  Google Scholar 

  56. Rooney C, Rickinson AB, Moss DJ, Lenoir GM, Epstein MA. Cell-mediated immunosurveillance mechanisms and the pathogenesis of Burkitťs lymphoma. In: Lenoir G, O’Conor G, Olweny C, eds. Burkit’s Lymphoma: A Human Cancer Model. Lyon: IARC Scientific Publications, 1985: 249–264. vol 60).

    Google Scholar 

  57. Rooney CM, Rowe M, Wallace LE, Rickinson AB. Epstein-Barr virus-positive Burkitťs lymphoma cells not recognized by virus-specific T-cell surveillance. Nature 1985; 317: 629–631.

    Article  PubMed  CAS  Google Scholar 

  58. Torsteinsdottir S, Masucci MG, Ehlin-Henriksson B et al. Differentiation dependent sensitivity of human B-cell derived lines to major histocompatibility complex-restricted T-cell cytotoxicity. Proceedings of the National Academy of Sciences USA 1986; 83: 5620–5624.

    Article  CAS  Google Scholar 

  59. Patarroyo M, Prieto J, Ernberg I, Gahmberg C. Absence or low expression of the leukocyte adhesion molecules CD 11 and CD 18 on Burkitt lymphoma cells. International Journal of Cancer 1988; 41: 901–907.

    Article  CAS  Google Scholar 

  60. Gregory CD, Murray RJ, Edwards CF, Rickinson AB. Down regulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein-Barr virus-positive Burkit’s lymphoma underlies tumour cell escape from virus-specific T cell surveillance. J Exp Med 1988; 167:1811–1824.

    Article  PubMed  CAS  Google Scholar 

  61. Masucci MG. Cell phenotype dependent down-regulation of MHC class I antigens in Burkit’s lymphoma cells. Current Topics in Microbiology and Immunology 1990; 166: 309–316.

    PubMed  CAS  Google Scholar 

  62. Rowe M, Masucci MG. Cellular adhesion molecules and MHC antigens in cells infected with Epstein-Barr virus: implications for immune recognition. In: Blair GE, Maudsley DJ, Pringle CR, eds. Modulation of MHC antigen expression and disease. Cambridge University Press, 1995 (in press).

    Google Scholar 

  63. Khanna R, Borrows SR, Agaet V, Moss DJ. Endoplasmic reticulum signal sequence facilitated transport of peptide epitopes restore immunogenicity of an antigen processing defective tumor cell line. International Immunology 1994; 6: 639–645.

    Article  PubMed  CAS  Google Scholar 

  64. Trivedi P, Hu L, Chen F et al. The EBV encoded membrane protein LMP1 from a nasopharyngeal carcinoma is non-immunogenic in a murine model system, in contrast to a B-cell derived homologue. European Journal of Cancer 1994; 30A: 84–88.

    Article  PubMed  CAS  Google Scholar 

  65. Frisan T, Sjöberg J, Dolcetti R et al. Local suppression of Epstein-Barr virus (EBV) specific cytotoxicity in biopsies of EBV positive Hodgkin’s Disease. Blood 1995; 86: 1493–1501.

    PubMed  CAS  Google Scholar 

  66. de Campos-Lima PO, Torsteinsdottir S, Klein G, Solitzeanu D, Masucci MG. Antigen processing and presentation by EBV carrying cell lines. Phenotype dependence and influence of the EBV encoded LMP1. International Journal of Cancer 1993; 53: 856–862.

    Article  Google Scholar 

  67. Nakagomi H, Dolcetti R, Bejarano MT, Pisa P, Kiessling R, Masucci MG. The Epstein-Barr virus latent membrane protein-1 (LMP1) induces production of interleukin-10 in Burkitt lymphoma lines. International Journal of Cancer 1994; 57: 240–244.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Masucci, M.G., Levitsky, V., Frisan, T., Levistkaya, J., De Campos-Lima, P.O. (1996). Virus induced cancer: The lesson of Epstein—Barr virus. In: Touraine, J.L., Traeger, J., Bétuel, H., Dubernard, J.M., Revillard, J.P., Dupuy, C. (eds) Cancer in Transplantation: Prevention and Treatment. Transplantation and Clinical Immunology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0175-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0175-9_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6563-4

  • Online ISBN: 978-94-009-0175-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics