Skip to main content

Ecological Interactions Within the Biodiversity of Cultivated Systems

  • Chapter
  • First Online:

Abstract

Various types of biodiversities can be found within the cultivated plot and in its surrounding environment: plant, animal and microbial biodiversities; aboveground and belowground biodiversities; productive, resource, destructive biodiversities, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://mab-france.org/fr/concilier-activites-et-environnement/elevage-et-biodiversite/ (retrieved: 25 May 2013).

References

  • Acosta-Martínez, V., Bell, C. W., Morris, B. E. L., Zak, J., & Allen, V. G. (2010). Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region. Agriculture, Ecosystems and Environment, 137, 231–240.

    Google Scholar 

  • Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment, 74, 19–31.

    Google Scholar 

  • Anonymous, (2008). Conduite des systèmes de culture sur couverts végétaux et affouragement des vaches laitières: guide pour les Hautes Terres de Madagascar, pp. 90.

    Google Scholar 

  • Archimède, H., Gourdine, J. L., Fanchone, A., Tournebize, R., Bassien-Capsa, M., & González-García, E. (2012). Integrating banana and ruminant production in the French West Indies. Tropical Animal Health and Production, 44, 1289–1296.

    PubMed  Google Scholar 

  • Avelino, J., Romero-Gurdián, A., Cruz-Cuellar, H. F., & Declerck, F. A. J. (2012). Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes. Ecological Applications, 22, 584–596.

    PubMed  Google Scholar 

  • Babin, R., ten Hoopen, G. M., Cilas, C., Enjalric, F., Yede, P., Gendre, Lumaret, J. P. (2010). Impact of shade on the spatial distribution of Sahlbergella singularis in traditional cocoa agroforests. Agricultural and Forest Entomology, 12, 69–79.

    Google Scholar 

  • Bell, L. W., Kirkegaard, J. A., Swan, A., Hunt, J. R., Huth, N. I., & Fettell, N. A. (2011). Impacts of soil damage by grazing livestock on crop productivity. Soil and Tillage Research, 113, 19–29.

    Google Scholar 

  • Bernard, L., Chapuis-Lardy, L., Razafimbelo, T., Razafindrakoto, M., Pablo, A. L., Legname, E., et al. (2012). Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. The ISME Journal, 6, 213–222.

    PubMed  CAS  Google Scholar 

  • Blanchart, E., Albrecht, A., Chevallier, T., & Hartmann, C. (2004). The respective roles of biota (roots and earthworms) in the restoration of physical properties in vertisol under a Digitaria decumbens pasture (Martinique). Agriculture, Ecosystems and Environment, 103, 343–355.

    Google Scholar 

  • Blanchart, E., Villenave, C., Viallatoux, A., Barthès, B., Girardin, C., Azontonde, A., et al. (2006). Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. European Journal of Soil Biology, 42, 136–144.

    Google Scholar 

  • Blanchart, E., Bernoux, M., Sarda, X., Siqueira Neto, M., Cerri, C. C., Piccolo, M., et al. (2007). Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agriculturae Conspectus Scientificus, 72, 81–87.

    Google Scholar 

  • Blanchart, E., Marilleau, N., Chotte, J. L., Drogoul, A., Perrier, E., & Cambier, C. (2009). SWORM: an agent-based model to simulate the effect of earthworms on soil structure. European Journal of Soil Science, 60, 13–21.

    Google Scholar 

  • Blouin, M., Zuily-Fodil, Y., Pham-Ti, A. T., Laffray, D., Reversat, G., Pando, A., et al. (2005). Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecology Letters, 8, 202–208.

    Google Scholar 

  • Bonkowski, M., & Schaefer, M. (1997). Interactions between earthworms and soil protozoa—a trophic component in the soil food web. Soil Biology and Biochemistry, 29, 499–502.

    CAS  Google Scholar 

  • Bonkowski, M., Cheng, W., Griffiths, B. S., Alphei, J., & Scheu, S. (2000). Microbial-faunal interactions in the rhizosphere and effects on plant growth. European Journal of Soil Biology, 36, 135–147.

    Google Scholar 

  • Bonkowski, M., Villenave, C., & Griffiths, B. (2009). Rhizospher fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant and Soil, 321, 213–233.

    CAS  Google Scholar 

  • Bowden, R., Shroyer, J., Roozeboom, K., Claassen, M., Evans, P., Gordon, B., et al. (2001). Performance of wheat variety blends in Kansas. Keeping up with Research 128, Kansas State University Agricultural Experiment Station and Cooperative Extension Service Manhattan, Kansas.

    Google Scholar 

  • Brauman, A., Doré, J., Eggleton, P., Bignell, D., & Kane, M. D. (2000). Molecular phylogenetic profiling of microbial communities in guts of termites with different feeding habits. FEMS Microbiology Ecology, 35(1), 27–36.

    Google Scholar 

  • Brown, G. G., Edwards, C. A., & Brussaard, L. (2004). How earthworms affect plant growth: burrowing into the mechanisms? In C. A. Edwards (Ed.), Earthworm Ecology (pp. 13–49). CRC: Press.

    Google Scholar 

  • Callot, G., Vercambre, B., Neuveglise, C., & Riba, G. (1996). Hyphasmata and conidial pellets: an original morphological aspect of soil colonization by Beauveria brongniartii. Journal of Invertebrate Patholology, 68, 173–176.

    Google Scholar 

  • Castilla, N. P., Vera Cruz, C. M., Mew, T. W. (2003). Using rice cultivar mixtures: a sustainable approach for managing diseases and increasing yield. International Rice Research Notes, 28, 5–11.

    Google Scholar 

  • Chantereau, J., Trouche, G., Rami, J. F., Deu, M., Barro, C., & Grivet, L. (2004). RFLP mapping of QTLs for photoperiod response in tropical sorghum. Euphytica, 120, 183–194.

    Google Scholar 

  • Chapuis-Lardy, L., Ramiandrisoa, R. S., Randriamanantsoa, L., Morel, C., Rabeharisoa, L., & Blanchart, E. (2009). Modification of P availability by endogeic earthworms (Glossoscolecidae) in ferralsols of the Malagasy Highlands. Biology and Fertility of Soils, 45, 415–422.

    Google Scholar 

  • Chapuis-Lardy, L., Brauman, A., Bernard, L., Pablo, A. L., Toucet, J., Mano, M. J., et al. (2010). Effect of the endogeic earthworm Pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar). Applied Soil Ecology, 45(3), 201–208.

    Google Scholar 

  • Chin, K. M., & Wolfe, M. S. (1984). The spread of Erysiphe graminis f. sp. hordei in mixtures of barley cultivars. Plant Pathology, 33, 89–100.

    Google Scholar 

  • Coq, S., Barthès, B. G., Oliver, R., Rabary, B., & Blanchart, E. (2007). Earthworm activity affects soil aggregation and soil organic matter dynamics according to the quality and localization of crop residues: an experimental study (Madagascar). Soil Biology and Biochemistry, 39, 2119–2128.

    CAS  Google Scholar 

  • Cornu, A., Kondjoyan, N., Martin, B., Verdier-Metz, I., Pradel, P., Berdague, J.-L., et al. (2005). Terpene profiles in Cantal and Saint-Nectaire type cheese made from raw or pasteurized milk. Journal Science Food Agriculture, 85, 2040–2046.

    CAS  Google Scholar 

  • Cox, C. M., Garrett, K. A., Bowden, R. L., Fritz, A. K., Dendy, S. P., & Heer, W. F. (2004). Cultivar mixtures for the simultaneous management of multiple diseases: tan spot and leaf rust of wheat. Phytopathology, 94, 961–969.

    PubMed  CAS  Google Scholar 

  • Cragg, R. G., & Bardgett, R. D. (2001). How changes in soil fauna diversity and composition within a trophic group influence decomposition processes. Soil Biology and Biochemistry, 33, 2073–2081.

    CAS  Google Scholar 

  • Dakouo, D., Trouche, G., Bâ Malick, N., Neya, A., Kaboré, K. B. (2005). Lutte génétique contre la cécidomyie du sorgho, Stenodiplosis sorghicola, une contrainte majeure à la production du sorgho au Burkina Faso. Cahiers Agricultures, 14, 201–208.

    Google Scholar 

  • Dauber, J., & Wolters, V. (2000). Microbial activity and functional diversity in the mounds of three different ant species. Soil Biology and Biochemistry, 32, 93–99.

    CAS  Google Scholar 

  • de Alencar Figueiredo, L. F., Davrieux, F., Fliedel, G., Rami, J. F., Chantereau, J., Deu, M., et al. (2006). Development of NIRS equations for food grain quality traits through exploitation of a core collection of cultivated sorghum. Journal of Agriculture and Food Chemistry, 54(22), 8501–8509.

    Google Scholar 

  • Decaëns, T. (2010). Macroecological patterns in soil communities. Global Ecology and Biogeography, 19, 287–302.

    Google Scholar 

  • Decaëns, T., Jiménez, J. J., Gioia, C., Measey, G. J., & Lavelle, P. (2006). The values of soil animals for conservation biology. European Journal of Soil Biology, 42, S23–S38.

    Google Scholar 

  • De Deyn, G. B., van Ruijven, J., Raaijmakers, C. E., de Ruiter, P. C., & van der Putten, W. H. (2007). Above- and belowground insect herbivores differentially affect soil nematode communities in species-rich plant communities. Oikos, 116, 923–930.

    Google Scholar 

  • Deu, M., Ratnadass, A., Ag Hamada, M., Diabaté, M., Noyer, J. L., Chantereau, J. (2005). Quantitative trait loci for head-bug resistance in sorghum. African Journal of Biotechnology, 4, 247–250.

    Google Scholar 

  • Dugué, P., Vall, E., Lecomte, P., Klein, H. D., & Rollin, D. (2004). Évolution des relations entre l’agriculture et l’élevage dans les savanes d’Afrique de l’Ouest et du Centre. Un nouveau cadre d’analyse pour améliorer les modes d’intervention et favoriser les processus d’innovation. OCL, 11, 268–276.

    Google Scholar 

  • Durmic, Z., McSweeney, C. S., Kemp, G. W., Hutton, P., Wallace, R. J., & Vercoe, P. E. (2008). Australian plants with potential to inhibit bacteria and processes involved in ruminal biohydrogenation of fatty acids. Animal Feed Science and Technology, 145(1–4), 271–284.

    CAS  Google Scholar 

  • Edwards, P. (2007). Introduced Dung Beetles in Australia 1967–2007 Current Status and Future Directions. Australia: Dung Beetles for Landcare Farming Committee. 66 p.

    Google Scholar 

  • Eisenhauser, N., Hessler, H., Engels, C., Gleixner, G., Habekost, M., Milcu, A., et al. (2010). Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology, 91, 485–496.

    Google Scholar 

  • Falconnier, G., Mouret, J. C., Hammond, R. (2012). Des canards pour désherber les rizières : une intégration agriculture-élevage prometteuse pour les riziculteurs biologiques camarguais. ORP Conférence 2012, 27–30 August 2012, 124. Montpellier.

    Google Scholar 

  • Finch, S., & Collier, R. H. (2000). Host-plant selection by insects: a theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomologia Experimentalis et Applicata, 96, 91–102.

    Google Scholar 

  • Finch, S., & Kienegger, M. (1997). A behavioural study to help clarify how undersowing with clover affects host plant selection by pest insects of brassica crops. Entomologia Experimentalis et Applicata, 84, 165–172.

    Google Scholar 

  • Fincher, G. T. (1975). Effects of dung beetle activity on the number of nematode parasites acquired by grazing cattle. The Journal of Parasitology, 61(4), 759–762.

    PubMed  CAS  Google Scholar 

  • Finckh, M. R., Gacek, E. S., Goyeau, H., Lannou, C., Merz, U., Mundt, C. C., et al. (2000). Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie, 20, 813–837.

    Google Scholar 

  • Fliedel, G., Ratnadass, A., Yajid, M. (1996). Study of some physico-chemical characteristics of developing sorghum grains in relation with head bug resistance. In: D. A. V. Dendy (Ed.), Proceedings of the ICC International Symposium on Cereals Science and Technology: Impact on a Changing Africa. (pp. 46–63, 9–13 May 1993, ICC, Vienna, Austria). Pretoria: South Africa.

    Google Scholar 

  • Furuno, T. (2001). The power of duck: integrated rice and duck farming. Tasmania: Tagari Publications, Australia.

    Google Scholar 

  • Gallun, R. L. (1977). Genetic basis of Hessian fly epidemics. Annals of the New York Academy of Science, 287, 223–229.

    Google Scholar 

  • Gastine, A., Schere-Lorenzen, M., & Leadly, P. M. (2003). No consistent effects of plant diversity on root biomass, soil biota and soil abiotic conditions in temperate grassland communities. Applied Soil Ecology, 24, 101–111.

    Google Scholar 

  • Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-containing soil bacteria. European Journal of Plant Pathology, 119, 329–339.

    CAS  Google Scholar 

  • Goebel, R., Tabone, E., Karimjee, H., Caplong, P. (2005). Mise au point réussie d’une lutte biologique contre le foreur de la canne à sucre Chilo sacchariphagus (Lepidoptera, Crambidae), à la Réunion. 7e Conférence internationale sur les ravageurs en agriculture, Montpellier.

    Google Scholar 

  • Goebel, F. R., Roux, E., Marquier, M., Frandon, J., Do Thi Khanh, H., Tabone, E. (2010). Biocontrol of Chilo sacchariphagus (Lepidoptera: Crambidae) a key pest of sugarcane: lessons from the past and future prospects. Sugar Cane International, 28, 128–132.

    Google Scholar 

  • Herren, H. R., Neuenschwander, P., Hennessey, R. D., & Hammond, W. N. O. (1987). Introduction and dispersal of Epidinocarsis lopezi (Hym., Encyrtidae), an exotic parasitoid of the cassava mealybug, Phenacoccus manihoti (Hom., Pseudococcidae), in Africa. Agriculture Ecosystems and Environment, 19, 131–144.

    Google Scholar 

  • Hossain, S. T., Sugimoto, H., Ahmed, G. J. U., & Islam, M. R. (2005). Effect of integrated rice-duck farming on rice yield, farm productivity, and rice-provisioning ability of farmers. Asian Journal of Agriculture and Development, 2, 79–86.

    Google Scholar 

  • Irshad, U., Villenave, C., Brauman, A., & Plassard, C. (2011). Grazing by nematodes on rhizosphere bacteria enhances nitrate and phosphorus availability to Pinus pinaster seedlings. Soil Biology and Biochemistry, 43, 2121–2126.

    CAS  Google Scholar 

  • Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45–66.

    PubMed  CAS  Google Scholar 

  • Jana, U., Barot, S., Blouin, M., Lavelle, P., Laffray, D., & Repellin, A. (2010). Earthworms influence the production of above- and belowground biomass and the expression of genes involved in cellular proliferation and stress responses in Arabidopsis thaliana. Soil Biology and Biochemistry, 42, 244–252.

    CAS  Google Scholar 

  • Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.

    Google Scholar 

  • Kardol, P., & Wardle, D. A. (2010). How understanding aboveground-belowground linkages can assist restoration ecology? Trends in Ecology and Evolution, 25(11), 670–679.

    PubMed  Google Scholar 

  • Kennedy, A. C., & Smith, K. L. (1995). Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 170, 75–86.

    CAS  Google Scholar 

  • Khan, Z. R., Overholt, W. A., & Ng’eny-Mengech, A. (2003). Integrated pest management case studies from ICIPE. In K. Maredia, D. Dakouo, & D. Mota-Sanchez (Eds.), Integrated pest management in the Global Arena. MI: Michigan State University, East Leasing.

    Google Scholar 

  • Khan, Z. R., Chiliswa, P., Ampong-Nyarko, K., Smart, L. E., Polaszek, A., Wandera, J., et al. (1997a). Utilization of wild gramineous plants for management of cereal stemborers in Africa. Insect Science and its Application, 17, 143–150.

    Google Scholar 

  • Khan, Z. R., Hassanali, A., Overholt, W., Khamis, T. M., Hooper, A. M., Pickett, J. A., et al. (2002). Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. Journal of Chemical Ecology, 28, 1871–1885.

    PubMed  CAS  Google Scholar 

  • Khan, Z. R., Ampong-Nyarko, K., Chiliswa, P., Hassanali, A., Kimani, S., Lwande, W., et al. (1997b). Intercropping increases parasitism of pests. Nature, 388, 631–632.

    CAS  Google Scholar 

  • Kibblewhite, M. G., Ritz, K., & Swift, M. J. (2008). Soil health in agricultural systems. Transactions of the Royal Society B, 363, 685–701.

    CAS  Google Scholar 

  • Kueneman, E., Hoffmann, I., Kebe, B., Belem, C., Lecomte, P.H., Rollin, D., Carsky, R. (2002). FAO Joint mission FAO Cirad Crop livestock integration in the PRODS Program in Burkina Faso. Travel summary report Reg. file code PL6/1 Kueneman, p. 20.

    Google Scholar 

  • Kumar, A., & Sharma, S. (2008). An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Industrial Crops and Products, 28, 1–10.

    CAS  Google Scholar 

  • LaMondia, J., Elmer, W. H., Mervosh, T. L., & Cowles, R. S. (2002). Integrated management of strawberry pests by rotation and intercropping. Crop Protection, 21, 837–846.

    Google Scholar 

  • Laossi, K. R., Decaëns, T., Jouquet, P., & Barot, S. (2010). Can we predict how earthworm effects on plant growth vary with soil propoerties? Applied and Environmental Soil Science,. doi:10.1155/2010/784342.

    Google Scholar 

  • Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., et al. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, S3–S15.

    Google Scholar 

  • Lavigne, A., Dumbardon-Martial, E., & Lavigne, C. (2012). Les volailles pour un contrôle biologique des adventices dans les vergers. Fruits, 67, 341–351.

    Google Scholar 

  • Lavigne, C., Lesueur-Jannoyer, M., de Lacroix, S., Chauvet, G., Lavigne, A., & Dufeal, D. (2011). De la production fruitière intégrée à la gestion écologique des vergers aux Antilles. Innovations agronomiques, 16, 53–62.

    Google Scholar 

  • Lee, S. Y., Bollinger, J., Bezdicek, D., & Ogram, A. (1996). Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Applied Environmental Microbiology, 62, 3787–3793.

    PubMed  CAS  Google Scholar 

  • Loranger, G., Ponge, J. F., Blanchart, E., & Lavelle, P. (1998). Impact of earthworms on the diversity of microarthropods in a vertisol (Martinique). Biology and Fertility of Soils, 27, 21–26.

    Google Scholar 

  • Loranger, G., Cabidoche, Y. M., Delone, B., Quénéhervé, P., & Ozier-Lafontaine, H. (2012). How earthworm activities affect banana plant response to nematodes parasitism. Applied Soil Ecology, 52, 1–8.

    Google Scholar 

  • Marie-Magdeleine, C., Udino, L., Philibert, L., Bocage, B., & Archimede, H. (2010). In vitro effects of Cassava (Manihot esculenta) leaf extracts on four development stages of Haemonchus contortus. Veterinary Parasitology, 173(1–2), 85–92.

    PubMed  CAS  Google Scholar 

  • Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.

    PubMed  CAS  Google Scholar 

  • May, R. M. (1990). How many species? Philosophical Transactions of the Royal Society B: Biological Sciences, 330, 293–304.

    Google Scholar 

  • Mazorra, C. (2006). Manejo de la selección del alimento para reducir el ramoneo de ovinos integrados a plantaciones de cítricos. CIBA-UNICA-ICA, La Habana: Tesis Doctor en Ciencias Veterinarias. 121 p.

    Google Scholar 

  • McIntosh, R. A. (1998). Breeding wheat for resistance to biotic stresses. Euphytica, 100, 19–34.

    Google Scholar 

  • Men, B. X., Ogle, R. B., & Lindberg, J. E. (2002). Studies on integrated duck-rice systems in the Mekong delta of Vietnam. Journal of Sustainable Agriculture, 20, 27–40. doi:10.1300/J064v20n01_05.

    Google Scholar 

  • Mille, B., de Valavieille-Pope, C. (2001). Associations variétales et interventions fongicides contre les septorioses et la rouille brune du blé d’hiver. Cahiers Agricultures, 10, 125–129.

    Google Scholar 

  • MEA (Millennium Ecosystem Assessment) (2005). Ecosystem and Human Well-Being: Synthesis. pp. 137, Washington: Island Press.

    Google Scholar 

  • Mundt, C. C. (2002). Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology, 40, 381–410.

    PubMed  CAS  Google Scholar 

  • Naudin, K., Scopel, E., Andriamandroso, A. L. H., Rakotosolofo, M., Andriamarosoa, Ratsimbazafy, N. R. S., Rakotozandriny, J. N., Salgado, P., Giller, K. E. (2012). Trade-offs between biomass use and soil cover. The case of rice-based cropping systems in the Lake Alaotra region of Madagascar. Experimental Agriculture, 48, 194–209.

    Google Scholar 

  • Nibouche, S., Tibère, R., & Costet, L. (2012). The use of Erianthus arundinaceus as a trap crop for the stem borer Chilo sacchariphagus reduces yield losses in sugarcane: preliminary results. Crop Protection, 42, 10–15.

    Google Scholar 

  • Painter, R. H. (1951). Insect Resistance in Crop Plants. New York: Macmillan.

    Google Scholar 

  • Peacock, A. D., Mullen, M. D., Ringelberg, D. B., Tyler, D. D., Hedrick, D. B., Gale, P. M., et al. (2001). Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biology and Biochemistry, 33(7–8), 1011–1019.

    CAS  Google Scholar 

  • Postma-Blaauw, M. B., Bloem, J., Faber, J. H., van Groeningen, J. W., de Goede, R. G. M., & Brussaard, L. (2006). Earthworm species composition affects the soil bacterial community and net nitrogen mineralization. Pedobiologia, 50, 243–256.

    CAS  Google Scholar 

  • Rabary, B., Sall, S., Letourmy, P., Husson, O., Ralambofetra, E., Moussa, N., et al. (2008). Effects of living mulches or residue amendments on soil microbial properties in direct seeded cropping systems of Madagascar. Applied Soil Ecology, 39, 236–243.

    Google Scholar 

  • Raboin, L. M., Ramanantsoanirina, A., Dusserre, J., Razasolofonanahary, F., Tharreau, D., Lannou, C., et al. (2012). Two-component cultivar mixtures reduce rice blast epidemics in an upland agrosystem. Plant Pathology,. doi:10.1111/j.1365-3059.2012.02602.x.

    Google Scholar 

  • Randriamanantsoa, R., Aberlenc, H. P., Ralisoa, O. B., Ratnadass, A., Vercambre, B., (2010). Les larves des Scarabaeoidea (Insecta, Coleoptera) en riziculture pluviale des régions de haute et moyenne altitudes du centre de Madagascar. Zoosystema, 32, 19–72

    Google Scholar 

  • Randrianarivelo, R., Danthu, P., Benoit, C., Ruez, P., Raherimandimby, M., & Sarter, S. (2010). Novel alternative to antibiotics in shrimp hatchery: effects of the essential oil of Cinnamosma fragrans on survival and bacterial concentration of Penaeus monodon larvae. Journal of Applied Microbiology, 109, 642–650.

    PubMed  CAS  Google Scholar 

  • Randrianarivelo, R., Sarter, S., Odoux, E., Brat, P., Lebrun, M., Menut, C., et al. (2009). Composition and antimicrobial activity of essential oils of Cinnamosma fragrans. Food Chemistry, 114, 680–684.

    CAS  Google Scholar 

  • Ratnadass, A., & Wink, M. (2012). The phorbolester fraction from Jatropha curcas seed oil: potential and limits for crop protection against insect pests. International Journal of Molecular Sciences, 13, 16157–16171.

    PubMed  CAS  Google Scholar 

  • Ratnadass, A., Chantereau, J., Gigou, J. (eds.) (1998). Amélioration du sorgho et de sa culture en Afrique de l’Ouest et du Centre. In: Actes de l’Atelier de restitution du programme conjoint sur le sorgho Icrisat-Cirad. (pp. 17–20 March 1997, Bamako, Mali, coll. Colloques, Montepellier). CIRAD–CA: France.

    Google Scholar 

  • Ratnadass, A., Doumbia, Y. O., Ajayi, O. (1995a). Bioecology of sorghum head bug Eurystylus immaculatus and crop losses in West Africa. In: K. F. Nwanze, O. Youm (Eds.), Panicle Insect Pests of Sorghum and Pearl Millet: Proceedings of an International Consultative Workshop India, (pp. 91–102, 4–7 October 1993, ICRISAT Sahelian Center, Niamey, Niger, 502 324), Patancheru: Andhra Pradesh.

    Google Scholar 

  • Ratnadass A., Ajayi O., Fliedel, G., Ramaiah, K. V. (1995b). Host plant resistance in sorghum to Eurystylus immaculatus in West Africa. In: K. F. Nwanze, O. Youm (Eds.), Panicle Insect Pests of Sorghum and Pearl Millet: Proceedings of an International Consultative Workshop, India, (pp. 191–199, 4–7 October 1993, ICRISAT Sahelian Center, Niamey, Niger, 502 324), Patancheru: Andhra Pradesh.

    Google Scholar 

  • Ratnadass, A., Chantereau, J., Coulibaly, M. F., & Cilas, C. (2002). Inheritance of resistance to the panicle-feeding bug Eurystylus oldi and the sorghum midge Stenodiplosis sorghicola in sorghum. Euphytica, 123, 131–138.

    Google Scholar 

  • Ratnadass, A., Fernandes, P., Avelino, J., & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agronomy for Sustainable Development, 32, 273–303.

    Google Scholar 

  • Ratnadass, A., Chantereau, J., Cissé, B., Ag Hamada, M., Fliedel, G., Grabulos, J., Luce, C. (2006). Selection of a sorghum line CIRAD 441 combining productivity and resistance to midge and head bugs. International Sorghum and Millets Newsletter, 47, 30–32.

    Google Scholar 

  • Ratnadass, A., Marley, P. S., Hamada, M. A., Ajayi, O., Cissé, B., Assamoi, F., et al. (2003). Sorghum head-bugs and grain molds in west and central Africa. 1. Host plant resistance and bug-mold interactions on sorghum grains. Crop Protection, 22, 837–851.

    Google Scholar 

  • Retureau, É., Callon, C., Didienne, R., & Montel, M.-C. (2010). Is microbial diversity an asset for inhibiting Listeria monocytogenes in raw milk cheeses? Dairy Science and Technology, 90(4), 375–398.

    CAS  Google Scholar 

  • Risède, J. M., Lescot, T., Cabrera Cabrera, J., Guillon, M., Tomekpe, K., Kema, G. H. J., Cote, F. (2010). Challenging short and mid-term strategies to reduce the use of pesticides in banana production. Banana Field Study—Guide Number 1. Retrieved May 25, 2013) from http://www.endure-network.eu/endure_publications/endure_publications2.

  • Rougerie, R., Decaëns, T., Deharveng, L., Porco, D., James, S. W., Chang, C.-H., et al. (2009). DNA barcodes for soil animal taxonomy: transcending the final frontier. Pesquisa Agropecuaria Brasileira, 44, 789–801.

    Google Scholar 

  • Sarter, S., Randrianarivelo, R., Ruez, P., Raherimandimby, M., & Danthu, P. (2011). Antimicrobial effects of essential oils of Cinnamosma fragrans on the bacterial communities of the water rearing of Penaeus monodon larvae. Vector Borne and Zoonotic Diseases, 11(4), 433–437.

    PubMed  Google Scholar 

  • Scheu, S. (2003). Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia, 47, 846–856.

    Google Scholar 

  • Séguy, L., Husson, O., Charpentier, H., Bouzinac, S., Michellon, R., Chabanne, A., Boulakia, S., Tivet, F., Naudin, K., Enjalric, F., Chabierski, S., Rakotondralambo, P. Rakotondramanana (2009). La gestion des écosystèmes cultivés en semis direct sur couverture végétale permanente. In: Manuel pratique du semis direct à Madagascar. 1, Chap. 2, p. 32.

    Google Scholar 

  • Senapati, B. K., Lavelle, P., Giri, S., Pashanasi, B., Alegre, J., Decaëns, T., Jimenez, J. J., Albrecht, A., Blanchart, E., Mahieu, M., Rousseaux, L., Thomas, R., Panigrahi, P. K., Venkatachalam, M. (1999). In-soil earthworm technologies for tropical agroecosystems. In: (P. Lavelle, L. Brussaard, P. Hendrix (Eds.), Earthworm Management in Tropical Agroecosystems. CABI Publishing, 199–238.

    Google Scholar 

  • Shetty, S. V. R., Beninati, N. F., Beckerman, S. R. (1991). Strengthening sorghum and pearl millet research in mali. (ICRISAT, p. 85, Patancheru 502 324), Andhra Pradesh: India.

    Google Scholar 

  • Singh, J. S., Pandey, V. C., & Singh, D. P. (2011). Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems and Environment, 140, 339–353.

    Google Scholar 

  • Spehn, E. M., Joshi, J., Schmid, B., Alphei, J., & Körner, C. (2000). Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystem. Plant and Soil, 224, 217–230.

    CAS  Google Scholar 

  • Swift, M. J., Heal, O. W., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems. Oxford: Blackwell Scientific.

    Google Scholar 

  • Su, P., Liao, X. I., Zhang, Y., & Huang, H. (2012). Influencing factors on rice sheath blight epidemics in integrated rice-duck system. Journal of Integrative Agriculture, 11, 1462–1473.

    Google Scholar 

  • Tao, J., Chen, X., Liu, M., Hu, F., Griffiths, B., & Li, H. (2009). Earthworms change the abundance and community structure of nematodes and protozoa in a maize residue amended rice-wheat rotation agro-ecosystem. Soil Biology and Biochemistry, 41, 898–904.

    CAS  Google Scholar 

  • Thomas, J., Hein, G., Baltensperger, D., Nelson, L., Haley, S. (2002). Managing the Russian wheat aphid with resistant wheat varieties. NebFact, Nebraska Cooperative Extension, NF96–307.

    Google Scholar 

  • Thuita, M., Pypers, P., Herrmann, L., Okalebo, R. J., Othieno, C., Muema, E., et al. (2012). Commercial rhizobial inoculants significantly enhance growth and nitrogen fixation of a promiscuous soybean variety in Kenyan soils. Biology and Fertility of Soils, 48, 87–96.

    Google Scholar 

  • Tiwari, S. C., & Mishra, R. R. (1993). Fungal abundance and diversity on earthworm casts and undigested soil. Biology and Fertility of Soils, 16, 131–134.

    Google Scholar 

  • Tooker, J. F., & Frank, S. D. (2012). Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. Journal of Applied Ecology, 49, 974–985. doi:10.1111/j.1365-2664.2012.02173.x.

    Google Scholar 

  • Turbé, A., De Toni, A., Benito, P., Lavelle, P., Lavelle, P., Ruiz, N., Van der Putten, W. H., Labouze, E., Mudgal, S. (2010). Soil biodiversity: functions, threats and tools for policy makers. Bio intelligence service, IRD, and NIOO, report for European commission (DG environment).

    Google Scholar 

  • de Vallavieille-Pope, C. (2004). Management of disease resistance diversity of cultivars of a species in single fields: controlling epidemics. Comptes Rendus Biologies. 327(611–620).

    Google Scholar 

  • van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., et al. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72.

    Google Scholar 

  • Vercambre, B., Charbonnier, G., Launois, M., Laveissière, G. (2008). Le ver blanc au paradis vert, ou l’histoire d’un bioagresseur de la canne à sucre en milieu insulaire. Enquête scientifique, coll. Les savoirs partagés, CIRAD, p. 75.

    Google Scholar 

  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.

    CAS  Google Scholar 

  • Villenave, C., Rabary, B., Chotte, J. L., Blanchart, E., & Djigal, D. (2009). Impact of direct seeding mulch-based cropping systems on soil nematodes in a long-term experiment in Madagascar. Pesquisa Agropecuaria Brasileira, 44, 949–953.

    Google Scholar 

  • Wall, D. H., Fitter, A. H., Paul E. A. 2(005). Developing new perspectives from advances in soil biodiversity research. In R. D. Bardgett, M. B. Usher, D. W. Hopkins (Eds), Biological Diversity and Function in Soils. Cambridge: Cambridge University Press, 3–27.

    Google Scholar 

  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.

    PubMed  CAS  Google Scholar 

  • Wilhoit, L. R. (1992). Evolution of herbivore virulence to plant resistance: influence of variety mixtures. In R. S. Fritz & E. L. Simms (Eds.), Plant resistance to herbivores and pathogens: ecology, evolution and genetics (pp. 91–119). Chicago: University of Chicago Press.

    Google Scholar 

  • Wolfe, M. S. (1985). The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology, 23, 251–273.

    Google Scholar 

  • Wurst, S. (2010). Effects of earthworms on above- and belowground herbivores. Applied Soil Ecology, 45, 123–130.

    Google Scholar 

  • Zhu, Y., Chen, H., Fan, J. H., Wang, Y., Li, Y., Fan, J. X., et al. (2000). Genetic diversity and disease control in rice. Nature, 406, 718–722.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Ratnadass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Éditions Quæ, 2013

About this chapter

Cite this chapter

Ratnadass, A., Blanchart, É., Lecomte, P. (2013). Ecological Interactions Within the Biodiversity of Cultivated Systems. In: Hainzelin, É. (eds) Cultivating Biodiversity to Transform Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7984-6_5

Download citation

Publish with us

Policies and ethics