Skip to main content

Diphtheria Toxin Based Molecules as Therapeutic Approaches

  • Chapter
  • First Online:

Abstract

Malignant diseases are still one of the main causes of death and due to this high mortality rate new therapy approaches are needed. During the last decades cancer specific antigens on the cell surface were identified. This fundamental discovery was the important step to develop ligand-directed-toxins and antibody-drug-conjugates. They consist of an antigen binding domain plus an effector moiety like bacterial or plant toxins, respectively. These kinds of new molecules achieved a higher selectivity and efficacy, eliminated side effects and ensured better drug delivery as the standard approaches in cancer therapy. In consequence, both types of molecules are promising candidates for further development to extend the existing chemotherapeutic and radioactive armamentarium. In this review, the existing approaches to apply diphtheria toxin in this respect are summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander RL, Ramage J, Kucera GL, Caligiuri MA, Frankel AE (2001) High affinity interleukin-3 receptor expression on blasts from patients with acute myelogenous leukemia correlates with cytotoxicity of a diphtheria toxin/IL-3 fusion protein. Leuk Res 25(10):875–881

    Article  PubMed  CAS  Google Scholar 

  • Black JH, McCubrey JA, Willingham MC, Ramage J, Hogge DE, Frankel AE (2003) Diphtheria toxin-interleukin-3 fusion protein (DT(388)IL3) prolongs disease-free survival of leukemic immunocompromised mice. Leukemia 17(1):155–159

    Article  PubMed  CAS  Google Scholar 

  • Blythman HE, Casellas P, Gros O, Gros P, Jansen FK, Paolucci F, Pau B, Vidal H (1981) Immunotoxins: hybrid molecules of monoclonal antibodies and a toxin subunit specifically kill tumour cells. Nature 290(5802):145–146

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann U, Mansfield E, Pastan I (1997) Effects of BCL-2 overexpression on the sensitivity of MCF-7 breast cancer cells to ricin, diphtheria and Pseudomonas toxin and immunotoxins. Apoptosis 2(2):192–198

    Article  PubMed  CAS  Google Scholar 

  • Burbage C, Tagge EP, Harris B, Hall P, Fu T, Willingham MC, Frankel AE (1997) Ricin fusion toxin targeted to the human granulocyte-macrophage colony stimulating factor receptor is selectively toxic to acute myeloid leukemia cells. Leuk Res 21(7):681–690

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Zheng T, Murphy J, Waters CA, Lin GY, Gill PS (1997) IL-4R expression in AIDS-KS cells and response to rhIL-4 and IL-4 toxin (DAB389-IL-4). Invest New Drugs 15(4):279–287

    Article  PubMed  CAS  Google Scholar 

  • Cannistra SA, Groshek P, Garlick R, Miller J, Griffin JD (1990) Regulation of surface expression of the granulocyte/macrophage colony-stimulating factor receptor in normal human myeloid cells. Proc Natl Acad Sci U S A 87(1):93–97

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary VK, FitzGerald DJ, Pastan I (1991) A proper amino terminus of diphtheria toxin is important for cytotoxicity. Biochem Biophys Res Commun 180(2):545–551

    Article  PubMed  CAS  Google Scholar 

  • Figgitt DP, Lamb HM, Goa KL (2000) Denileukin diftitox. Am J Clin Dermatol 1(1):67–72; discussion 73

    Google Scholar 

  • Frankel AE, Ramage J, Latimer A, Feely T, Delatte S, Hall P, Tagge E, Kreitman R, Willingham M (1999) High-level expression and purification of the recombinant diphtheria fusion toxin DTGM for PHASE I clinical trials. Protein Expr Purif 16(1):190–201

    Article  PubMed  CAS  Google Scholar 

  • Frankel AE, Powell BL, Duesbery NS, Vande Woude GF, Leppla SH (2002) Anthrax fusion protein therapy of cancer. Curr Protein Pept Sci 3(4):399–407

    Article  PubMed  CAS  Google Scholar 

  • Ghetie V, Vitetta ES (2001) Chemical construction of immunotoxins. Mol Biotechnol 18(3):251–268

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JE, Wisnieski BJ (1988) An endosomal model for acid triggering of diphtheria toxin translocation. J Biol Chem 263(30):15257–15259

    PubMed  CAS  Google Scholar 

  • Greenfield L, Johnson VG, Youle RJ (1987) Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science 238(4826):536–539

    Article  PubMed  CAS  Google Scholar 

  • Hobeika AC, Morse MA, Osada T, Peplinski S, Lyerly HK, Clay TM (2012) Depletion of human regulatory T cells. Methods Mol Biol 707:219–231

    Article  Google Scholar 

  • Jean LF, Murphy JR (1991) Diphtheria toxin receptor-binding domain substitution with interleukin 6: genetic construction and interleukin 6 receptor-specific action of a diphtheria toxin-related interleukin 6 fusion protein. Protein Eng 4(8):989–994

    Article  PubMed  CAS  Google Scholar 

  • Jia J, Li H, Tai S, Lv M, Liao M, Yang Z, Zhang B, Zhou B, Zhang G, Zhang L (2008) Construction and preliminary investigation of a plasmid containing a novel immunotoxin DT390-IL-18 gene for the prevention of murine experimental autoimmune encephalomyelitis. DNA Cell Biol 27(5):279–285

    Article  PubMed  CAS  Google Scholar 

  • Kim GB, Wang Z, Liu YY, Stavrou S, Mathias A, Goodwin KJ, Thomas JM, Neville DM (2007) A fold-back single-chain diabody format enhances the bioactivity of an anti-monkey CD3 recombinant diphtheria toxin-based immunotoxin. Protein Eng Des Sel 20(9):425–432

    Article  PubMed  CAS  Google Scholar 

  • Knueppel A, Lange S, Altmann S, Sekora A, Knuebel G, Vogel H, Lindner I, Freund M, Junghanss C (2012) Upfront denileukin diftitox as in vivo regulatory T-cell depletion in order to enhance vaccination effects in a canine allogeneic hematopoietic stem cell transplantation model. Vet Immunol Immunopathol 145(1–2):233–240

    Article  PubMed  CAS  Google Scholar 

  • Kreitman RJ, Chaudhary VK, Kozak RW, FitzGerald DJ, Waldman TA, Pastan I (1992) Recombinant toxins containing the variable domains of the anti-Tac monoclonal antibody to the interleukin-2 receptor kill malignant cells from patients with chronic lymphocytic leukemia. Blood 80(9):2344–2352

    PubMed  CAS  Google Scholar 

  • Manoukian G, Hagemeister F (2009) Denileukin diftitox: a novel immunotoxin. Expert Opin Biol Ther 9(11):1445–1451

    Article  PubMed  CAS  Google Scholar 

  • Negro A, Skaper SD (1997) Synthesis and cytotoxic profile of a diphtheria toxin-neurotrophin-4 chimera. J Neurochem 68(2):554–563

    Article  PubMed  CAS  Google Scholar 

  • Nicholls PJ, Johnson VG, Andrew SM, Hoogenboom HR, Raus JC, Youle RJ (1993) Characterization of single-chain antibody (sFv)-toxin fusion proteins produced in vitro in rabbit reticulocyte lysate. J Biol Chem 268(7):5302–5308

    PubMed  CAS  Google Scholar 

  • Oh S, Ohlfest JR, Todhunter DA, Vallera VD, Hall WA, Chen H, Vallera DA (2009) Intracranial elimination of human glioblastoma brain tumors in nude rats using the bispecific ligand-directed toxin, DTEGF13 and convection enhanced delivery. J Neurooncol 95(3):331–342

    Article  PubMed  CAS  Google Scholar 

  • Olson TA, Mohanraj D, Roy S, Ramakrishnan S (1997) Targeting the tumor vasculature: inhibition of tumor growth by a vascular endothelial growth factor-toxin conjugate. Int J Cancer 73(6):865–870

    Article  PubMed  CAS  Google Scholar 

  • Rustamzadeh E, Vallera DA, Todhunter DA, Low WC, Panoskaltsis-Mortari A, Hall WA (2006) Immunotoxin pharmacokinetics: a comparison of the anti-glioblastoma bi-specific fusion protein (DTAT13) to DTAT and DTIL13. J Neurooncol 77(3):257–266

    Article  PubMed  CAS  Google Scholar 

  • Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ (1991) bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67(5):879–888

    Article  PubMed  CAS  Google Scholar 

  • Shaw JP, Akiyoshi DE, Arrigo DA, Rhoad AE, Sullivan B, Thomas J, Genbauffe FS, Bacha P, Nichols JC (1991) Cytotoxic properties of DAB486EGF and DAB389EGF, epidermal growth factor (EGF) receptor-targeted fusion toxins. J Biol Chem 266(31):21118–21124

    PubMed  CAS  Google Scholar 

  • Sweeney EB, Foss FM, Murphy JR, vanderSpek JC (1998) Interleukin 7 (IL-7) receptor-specific cell killing by DAB389 IL-7: a novel agent for the elimination of IL-7 receptor positive cells. Bioconjug Chem 9(2):201–207

    Article  PubMed  CAS  Google Scholar 

  • Telang S, Rasku MA, Clem AL, Carter K, Klarer AC, Badger WR, Milam RA, Rai SN, Pan J, Gragg H, Clem BF, McMasters KM, Miller DM, Chesney J (2011) Phase II trial of the regulatory T cell-depleting agent, denileukin diftitox, in patients with unresectable stage IV melanoma. BMC Cancer 11(1):515

    Article  PubMed  CAS  Google Scholar 

  • Thorpe PE, Brown AN, Bremner JA Jr, Foxwell BM, Stirpe F (1985) An immunotoxin composed of monoclonal anti-Thy 1.1 antibody and a ribosome-inactivating protein from Saponaria officinalis: potent antitumor effects in vitro and in vivo. J Natl Cancer Inst 75(1):151–159

    PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science 228(4706):1440–1443

    Article  PubMed  CAS  Google Scholar 

  • Urieto JO, Liu T, Black JH, Cohen KA, Hall PD, Willingham MC, Pennell LK, Hogge DE, Kreitman RJ, Frankel AE (2004) Expression and purification of the recombinant diphtheria fusion toxin DT388IL3 for phase I clinical trials. Protein Expr Purif 33(1):123–133

    Article  PubMed  CAS  Google Scholar 

  • Vallera DA, Seo SY, Panoskaltsis-Mortari A, Griffin JD, Blazar BR (1999) Targeting myeloid leukemia with a DT(390)-mIL-3 fusion immunotoxin: ex vivo and in vivo studies in mice. Protein Eng 12(9):779–785

    Article  PubMed  CAS  Google Scholar 

  • Vallera DA, Li C, Jin N, Panoskaltsis-Mortari A, Hall WA (2002) Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst 94(8):597–606

    Article  PubMed  CAS  Google Scholar 

  • Vallera DA, Todhunter DA, Kuroki DW, Shu Y, Sicheneder A, Chen H (2005) A bispecific recombinant immunotoxin, DT2219, targeting human CD19 and CD22 receptors in a mouse xenograft model of B-cell leukemia/lymphoma. Clin Cancer Res 11(10):3879–3888

    Article  PubMed  CAS  Google Scholar 

  • Vallera DA, Oh S, Chen H, Shu Y, Frankel AE (2010) Bioengineering a unique deimmunized bispecific targeted toxin that simultaneously recognizes human CD22 and CD19 receptors in a mouse model of B-cell metastases. Mol Cancer Ther 9(6):1872–1883

    Article  PubMed  CAS  Google Scholar 

  • vanderSpek JC, Sutherland J, Sampson E, Murphy JR (1995) Genetic construction and characterization of the diphtheria toxin-related interleukin 15 fusion protein DAB389 sIL-15. Protein Eng 8(12):1317–1321

    Article  PubMed  CAS  Google Scholar 

  • vanderSpek JC, Sutherland JA, Zeng H, Battey JF, Jensen RT, Murphy JR (1997) Inhibition of protein synthesis in small cell lung cancer cells induced by the diphtheria toxin-related fusion protein DAB389 GRP. Cancer Res 57(2):290–294

    PubMed  CAS  Google Scholar 

  • Wang Z, Duran-Struuck R, Crepeau R, Matar A, Hanekamp I, Srinivasan S, Neville DM Jr, Sachs DH, Huang CA (2011) Development of a diphtheria toxin based antiporcine CD3 recombinant immunotoxin. Bioconjug Chem 22(10):2014–2020

    Article  PubMed  CAS  Google Scholar 

  • Wels W, Harwerth IM, Mueller M, Groner B, Hynes NE (1992) Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbB-2 receptor. Cancer Res 52(22):6310–6317

    PubMed  CAS  Google Scholar 

  • Williams DP, Parker K, Bacha P, Bishai W, Borowski M, Genbauffe F, Strom TB, Murphy JR (1987) Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Eng 1(6):493–498

    Article  PubMed  CAS  Google Scholar 

  • Williams DP, Snider CE, Strom TB, Murphy JR (1990) Structure/function analysis of interleukin-2-toxin (DAB486-IL-2). Fragment B sequences required for the delivery of fragment A to the cytosol of target cells. J Biol Chem 265(20):11885–11889

    PubMed  CAS  Google Scholar 

  • Woo JH, Bour SH, Dang T, Lee YJ, Park SK, Andreas E, Kang SH, Liu JS, Neville DM Jr, Frankel AE (2008) Preclinical studies in rats and squirrel monkeys for safety evaluation of the bivalent anti-human T cell immunotoxin, A-dmDT390-bisFv(UCHT1). Cancer Immunol Immunother 57(8):1225–1239

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ, Uckun FM, Vallera DA, Colombatti M (1986) Immunotoxins show rapid entry of diphtheria toxin but not ricin via the T3 antigen. J Immunol 136(1):93–98

    PubMed  CAS  Google Scholar 

  • Zhang H, Zhang S, Zhuang H, Lu F (2006) Cytotoxicity of a novel fibroblast growth factor receptor targeted immunotoxin on a human ovarian teratocarcinoma cell line. Cancer Biother Radiopharm 21(4):321–332

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht (outside the USA)

About this chapter

Cite this chapter

Schubert, I. (2014). Diphtheria Toxin Based Molecules as Therapeutic Approaches. In: Burkovski, A. (eds) Corynebacterium diphtheriae and Related Toxigenic Species. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7624-1_15

Download citation

Publish with us

Policies and ethics