Skip to main content

Molecular Genetic Tools for Research in Corynebacterium diphtheriae

  • Chapter
  • First Online:
  • 1097 Accesses

Abstract

Research into the molecular mechanisms used by Corynebacterium diphtheriae to cause disease has been aided by a wide variety of innovative, recently developed, molecular, biochemical and genetic tools. Multiple compatible plasmid origins are now available and the methods used to introduce DNA to C. diphtheriae have been both improved and expanded to include conjugation. In the last decade, a technique to perform transposon mutagenesis in C. diphtheriae was developed as well as phage-based vectors that permit introduction of DNA at a known specific chromosomal site. Genetic systems that model C. diphtheriae gene regulation in E. coli have been invaluable tools and in vitro systems to characterize protein binding and to identify genes controlled by the diphtheria toxin repressor are available. Finally the recent expansion of sequencing and bioinformatics has yielded multiple genomic sequences for comparison both to each other and to the genomes of pathogens from other species. The vast expansion of tools available to characterize the pathogenic mechanisms of C. diphtheriae has been a boon to researchers; resulting in the identification of new virulence factors, including pili and a heme oxygenase, in a species that has been studied in laboratories for more than 100 years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    Article  PubMed  CAS  Google Scholar 

  • Barksdale WL, Pappenheimer AM Jr (1954) Phage-host relationships in nontoxigenic and toxigenic diphtheria bacilli. J Bacteriol 67:220–232

    Google Scholar 

  • Bibb LA, Hatfull GF (2002) Integration and excision of the Mycobacterium tuberculosis prophage-like element, φRv1. Mol Microbiol 45:1515–1526

    Article  PubMed  CAS  Google Scholar 

  • Bibb LA, Schmitt MP (2010) The ABC transporter HrtAB confers resistance to hemin toxicity and is regulated in a hemin-dependent manner by the ChrAS two-component system in Corynebacterium diphtheriae. J Bacteriol 192:4606–4617

    Article  PubMed  CAS  Google Scholar 

  • Bibb LA, Kunkle CA, Schmitt MP (2007) The ChrA-ChrS and HrrA-HrrS signal transduction systems are required for activation of the hmuO promoter and repression of the hemA promoter in Corynebacterium diphtheriae. Infect Immun 75:2421–2431

    Article  PubMed  CAS  Google Scholar 

  • Boyd J, Oza MN, Murphy JR (1990) Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae. Proc Natl Acad Sci U S A 87:5968–5972

    Article  PubMed  CAS  Google Scholar 

  • Cerdeño-Tárraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M, Bentley SD, Besra GS, Churcher C, James KD, De Zoysa A, Chillingworth T, Cronin A, Dowd L, Feltwell T, Hamlin N, Holroyd S, Jagels K, Moule S, Quail MA, Rabbinowitsch E, Rutherford KM, Thomson NR, Unwin L, Whitehead S, Barrell BG, Parkhill J (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31:6516–6523

    Article  PubMed  Google Scholar 

  • Cianciotto N, Serwold-Davis T, Groman N, Ratti G, Rappuoli R (1990) DNA sequence homology between attB-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of γ-corynephage. FEMS Microbiol Lett 66:299–301

    CAS  Google Scholar 

  • Freeman VJ (1951) Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol 61:675–688

    PubMed  CAS  Google Scholar 

  • Gay P, Le Coq D, Steinmetz M, Berkelman T, Kado CI (1985) Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 164:918–921

    PubMed  CAS  Google Scholar 

  • Gill DM, Uchida T, Singer RA (1972) Expression of diphtheria toxin genes carried by integrated and nonintegrated phage β. Virology 50:664–668

    Article  PubMed  CAS  Google Scholar 

  • Goryshin IY, Reznikoff WS (1998) Tn5 in vitro transposition. J Biol Chem 273:7367–7374

    Article  PubMed  CAS  Google Scholar 

  • Goryshin IY, Jendrisak J, Hoffman LM, Meis R, Reznikoff WS (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18:97–100

    Article  PubMed  CAS  Google Scholar 

  • Greenfield L, Bjorn MJ, Horn G, Fong D, Buck GA, Collier RJ, Kaplan DA (1983) Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage β. Proc Natl Acad Sci U S A 80:6853–6857

    Article  PubMed  CAS  Google Scholar 

  • Groman NB (1953a) Evidence for the induced nature of the change from nontoxigenicity to toxigenicity in Corynebacterium diphtheriae as a result of exposure to specific bacteriophage. J Bacteriol 66:184–191

    CAS  Google Scholar 

  • Groman NB (1953b) The relation of bacteriophage to the change of Corynebacterium diphtheriae from avirulence to virulence. Science 117:297–299

    Article  CAS  Google Scholar 

  • Groman NB (1984) Conversion by corynephages and its role in the natural history of diphtheria. J Hyg 93:405–417

    Article  PubMed  CAS  Google Scholar 

  • Groth AC, Calos MP (2004) Phage integrases: biology and applications. J Mol Biol 335:667–678

    Article  PubMed  CAS  Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    Article  PubMed  CAS  Google Scholar 

  • Holmes RK (1976) Characterization and genetic mapping of nontoxinogenic (tox) mutants of corynebacteriophage β. J Virol 19:195–207

    PubMed  CAS  Google Scholar 

  • Holmes RK (2000) Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 181(Suppl 1):156–167

    Article  Google Scholar 

  • Holmes RK, Barksdale L (1969) Genetic analysis of tox+ and tox– bacteriophages of Corynebacterium diphtheriae. J Virol 3:586–598

    PubMed  CAS  Google Scholar 

  • Jäger W, Schäfer A, Pühler A, Labes G, Wohlleben W (1992) Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol 174:5462–5465

    PubMed  Google Scholar 

  • Kanei C, Uchida T, Yoneda M (1977) Isolation from Corynebacterium diphtheriae C7(β) of bacterial mutants that produce toxin in medium with excess iron. Infect Immun 18:203–209

    PubMed  CAS  Google Scholar 

  • Kirby JR (2007) In vivo mutagenesis using EZ-Tn5. Methods Enzymol 421:17–21

    Article  PubMed  CAS  Google Scholar 

  • Kunkle CA, Schmitt MP (2003) Analysis of the Corynebacterium diphtheriae DtxR regulon: identification of a putative siderophore synthesis and transport system that is similar to the Yersinia high-pathogenicity island-encoded yersiniabactin synthesis and uptake system. J Bacteriol 185:6826–6840

    Article  PubMed  CAS  Google Scholar 

  • Laird W, Groman N (1976) Prophage map of converting corynebacteriophage β. J Virol 19:208–219

    PubMed  CAS  Google Scholar 

  • Lauer P, Chow MY, Loessner MJ, Portnoy DA, Calendar R (2002) Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol 184:4177–4186

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Pascopella L, Jacobs WR Jr, Hatfull GF (1991) Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A 88:3111–3115

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Wang T, Ault K, Liu J, Schmitt MP, Holmes RK (1997) Identification and characterization of three new promoter/operators from Corynebacterium diphtheriae that are regulated by the diphtheria toxin repressor (DtxR) and iron. Infect Immun 65:4273–4280

    PubMed  CAS  Google Scholar 

  • Matsuda M, Barksdale L (1966) Phage-directed synthesis of diphtherial toxin in non-toxinogenic Corynebacterium diphtheriae. Nature 210:911–913

    Article  PubMed  CAS  Google Scholar 

  • Moreau S, Blanco C, Trautwetter A (1999) Site-specific integration of corynephage ϕ16: construction of an integration vector. Microbiology 145:539–548

    Article  PubMed  CAS  Google Scholar 

  • Mueller JH (1940) Nutrition of the diphtheria bacillus. Bacteriol Rev 4:97–134

    PubMed  CAS  Google Scholar 

  • Murphy JR, Skiver J, McBride G (1976) Isolation and partial characterization of a corynebacteriophage β, tox operator constitutive-like mutant lysogen of Corynebacterium diphtheriae. J Virol 18:235–244

    PubMed  CAS  Google Scholar 

  • Neŝvera J, Pátek M, Hochmannová J, Abrhamová Z, Bečvářová V, Jelínková M, Vohradský J (1997) Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 179:1525–1532

    PubMed  Google Scholar 

  • Ochsner UA, Vasil ML (1996) Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc Natl Acad Sci U S A 93:4409–4414

    Article  PubMed  CAS  Google Scholar 

  • Oram DM, Holmes RK (2006) Diphtheria Toxin. In: Alouf JE, Popoff MR (eds) The comprehensive sourcebook of bacterial protein toxins, 3rd edn. Academic Press 245–256

    Google Scholar 

  • Oram DM, Avdalovic A, Holmes RK (2002) Construction and characterization of transposon insertion mutations in Corynebacterium diphtheriae that affect expression of the diphtheria toxin repressor (DtxR). J Bacteriol 184:5723–5732

    Article  PubMed  CAS  Google Scholar 

  • Oram DM, Jacobson AD, Holmes RK (2006) Transcription of the contiguous sigB, dtxR, and galE genes in Corynebacterium diphtheriae: evidence for multiple transcripts and regulation by environmental factors. J Bacteriol 188:2959–2973

    Article  PubMed  CAS  Google Scholar 

  • Oram M, Woolston JE, Jacobson AD, Holmes RK, Oram DM (2007) Bacteriophage-based vectors for site-specific insertion of DNA in the chromosome of Corynebacteria. Gene 391:53–62

    Article  PubMed  CAS  Google Scholar 

  • Pappenheimer AM Jr, Johnson S (1936) Studies on diphtheria toxin production. I. The effect of iron and copper. Brit J Exp Pathol 17:335–341

    CAS  Google Scholar 

  • Pelicic V, Jackson M, Reyrat JM, Jacobs WR Jr, Gicquel B, Guilhot C (1997) Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc Nat l Acad Sci U S A 94:10955–10960

    Article  CAS  Google Scholar 

  • Puech V, Chami M, Lemassu A, Lanéelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffé M (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382

    PubMed  CAS  Google Scholar 

  • Qian Y, Lee JH, Holmes RK (2002) Identification of a DtxR-regulated operon that is essential for siderophore-dependent iron uptake in Corynebacterium diphtheriae. J Bacteriol 184:4846–4856

    Article  PubMed  CAS  Google Scholar 

  • Rappuoli R, Ratti G (1984) Physical map of the chromosomal region of Corynebacterium diphtheriae containing corynephage attachment sites attB1 and attB2. J Bacteriol 158:325–330

    PubMed  CAS  Google Scholar 

  • Rappuoli R, Michel JL, Murphy JR (1983) Integration of corynebacteriophages βtox+, ωtox+, and γtox− into two attachment sites on the Corynebacterium diphtheriae chromosome. J Bacteriol 153:1202–1210

    PubMed  CAS  Google Scholar 

  • Ratti G, Rappuoli R, Giannini G (1983) The complete nucleotide sequence of the gene coding for diphtheria toxin in the corynephage omega (tox+) genome. Nucleic Acids Res 11:6589–6595

    Article  PubMed  CAS  Google Scholar 

  • Reyes O, Guyonvarch A, Bonamy C, Salti V, David F, Leblon G (1991) ‘Integron’-bearing vectors: a method suitable for stable chromosomal integration in highly restrictive corynebacteria. Gene 107:61–68

    Article  PubMed  CAS  Google Scholar 

  • Roux E Jr, Yersin A (1888) Contribution a l’etude de la diphtherie. Ann Inst Pasteur 2:620–629

    Google Scholar 

  • Sander P, Meier A, Böttger EC (1995) rpsL+: a dominant selectable marker for gene replacement in mycobacteria. Mol Microbiol 16:991–1000

    Article  PubMed  CAS  Google Scholar 

  • Schmitt MP (1997a) Transcription of the Corynebacterium diphtheriae hmuO gene is regulated by iron and heme. Infect Immun 65:4634–4641

    CAS  Google Scholar 

  • Schmitt MP (1997b) Utilization of host iron sources by Corynebacterium diphtheriae: identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J Bacteriol 179:838–845

    CAS  Google Scholar 

  • Schmitt MP, Drazek ES (2001) Construction and consequences of directed mutations affecting the hemin receptor in pathogenic Corynebacterium species. J Bacteriol 183:1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Schmitt MP, Holmes RK (1991) Iron-dependent regulation of diphtheria toxin and siderophore expression by the cloned Corynebacterium diphtheriae repressor gene dtxR in C. diphtheriae C7 strains. Infect Immun 59:1899–1904

    PubMed  CAS  Google Scholar 

  • Schmitt MP, Holmes RK (1994) Cloning, sequence, and footprint analysis of two promoter/operators from Corynebacterium diphtheriae that are regulated by the diphtheria toxin repressor (DtxR) and iron. J Bacteriol 176:1141–1149

    PubMed  CAS  Google Scholar 

  • Serwold-Davis TM, Groman N, Rabin M (1987) Transformation of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and Escherichia coli with the C. diphtheriae plasmid pNG2. Proc Natl Acad Sci U S A 84:4964–4968

    Article  PubMed  CAS  Google Scholar 

  • Skorupski K, Taylor RK (1996) Positive selection vectors for allelic exchange. Gene 169:47–52

    Article  PubMed  CAS  Google Scholar 

  • Smith KF, Bibb LA, Schmitt MP, Oram DM (2009) Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae. J Bacteriol 191:1595–1603

    Article  PubMed  CAS  Google Scholar 

  • Sonnen H, Schneider J, Kutzner HJ (1990) Corynephage Cog, a virulent bacteriophage of Corynebacterium glutamicum, and its relationship to ϕGA1, an inducible phage particle from Brevibacterium flavum. J Gen Virol 71:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Stojiljkovic I, Bäumler AJ, Hantke K (1994) Fur regulon in Gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay. J Mol Biol 236:531–545

    Article  PubMed  CAS  Google Scholar 

  • Suh SJ, Silo-Suh LA, Ohman DE (2004) Development of tools for the genetic manipulation of Pseudomonas aeruginosa. J Microbiol Methods 58:203–212

    Article  PubMed  CAS  Google Scholar 

  • Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J (2002) Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45:362–367

    Article  PubMed  CAS  Google Scholar 

  • Tauch A, Bischoff N, Brune I, Kalinowski J (2003) Insights into the genetic organization of the Corynebacterium diphtheriae erythromycin resistance plasmid pNG2 deduced from its complete nucleotide sequence. Plasmid 49:63–74

    Article  PubMed  CAS  Google Scholar 

  • Ton-That H, Schneewind O (2003) Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol 50:1429–1438

    Article  PubMed  CAS  Google Scholar 

  • Ton-That H, Marraffini LA, Schneewind O (2004) Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol Microbiol 53:251–261

    Article  PubMed  CAS  Google Scholar 

  • Trost E, Blom J, Soares Sde C, Huang IH, Al-Dilaimi A, Schröder J, Jaenicke S, Dorella FA, Rocha FS, Miyoshi A, Azevedo V, Schneider MP, Silva A, Camello TC, Sabbadini PS, Santos CS, Santos LS, Hirata R Jr, Mattos-Guaraldi AL, Efstratiou A, Schmitt MP, Ton-That H, Tauch A (2012) Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 194:3199–3215

    Article  PubMed  CAS  Google Scholar 

  • Welkos SL, Holmes RK (1981) Regulation of toxinogenesis in Corynebacterium diphtheriae. I. Mutations in bacteriophage β that alter the effects of iron on toxin production. J Virol 37:936–945

    PubMed  CAS  Google Scholar 

  • Wohlleben W, Muth G, Kalinowski J (1993) Genetic engineering of gram-positive bacteria. In: Rehm H-J, Reed G, Pühler A, Stadler P (eds) Biotechnology, vol 2. VCH, Weinheim, pp 455–450

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana M. Oram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht (outside the USA)

About this chapter

Cite this chapter

Oram, D. (2014). Molecular Genetic Tools for Research in Corynebacterium diphtheriae . In: Burkovski, A. (eds) Corynebacterium diphtheriae and Related Toxigenic Species. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7624-1_14

Download citation

Publish with us

Policies and ethics