Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 797))

Abstract

When accurately estimated and validated, Markov model transition matrices contain information of the long-time molecular kinetics and thermodynamic properties of the molecular system studied, approximated on the discrete state space. Thus, many quantities of interest to the molecular scientist can now be calculated from the Markov model transition matrix rather than from a “direct” analysis of the underlying simulation data. The advantage over a direct analysis is that the Markov model provides straightforward access to some quantities that direct analyses do not, such as the equilibrium relaxation timescales and the assignment to transition processes via the eigenvalues and eigenvectors of the transition matrix. Moreover, Markov models permit a rigorous assessment of the statistical estimation error of any quantity calculated from the transition matrix, as described in the previous chapter. This chapter describes the following quantities that can be calculated from transition matrices: (1) Eigenvectors and Eigenvalues and their relation to equilibrium relaxation timescales and structural changes. (2) Metastable states. (3) Transition pathways. All quantities are illustrated on a simple discrete protein folding example.

Part of this article, including figures has been originally published in J.H. Prinz, B. Keller, F. Noé: “Probing molecular kinetics with Markov models: metastable states, transition pathways and spectroscopic observables”, Phys. Chem. Chem. Phys. 13, pp. 16912–16927 (2011)—Reproduced by permission of The Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amadei A, Linssen AB, Berendsen HJC (1993) Essential dynamics of proteins. Proteins 17:212–225

    Article  Google Scholar 

  2. Bachmann A, Kiefhaber T (2001) Apparent two-state tendamistat folding is a sequential process along a defined route. J Mol Biol 306(2):375–386. doi:10.1006/jmbi.2000.4399

    Article  PubMed  CAS  Google Scholar 

  3. Baldwin RL, Rose GD (1999) Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem Sci 24(1):26–33. http://view.ncbi.nlm.nih.gov/pubmed/10087919

    Article  PubMed  CAS  Google Scholar 

  4. Baldwin RL, Rose GD (1999) Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem Sci 24(2):77–83. http://view.ncbi.nlm.nih.gov/pubmed/10098403

    Article  PubMed  CAS  Google Scholar 

  5. Berezhkovskii A, Hummer G, Szabo A (2009) Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J Chem Phys 130(20). doi:10.1063/1.3139063

  6. Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem 53(1):291–318. doi:10.1146/annurev.physchem.53.082301.113146

    Article  PubMed  CAS  Google Scholar 

  7. Bradley C, Barrick D (2006) The notch ankyrin domain folds via a discrete, centralized pathway. Structure 14(8):1303–1312. doi:10.1016/j.str.2006.06.013

    Article  PubMed  CAS  Google Scholar 

  8. Cellitti J, Bernstein R, Marqusee S (2007) Exploring subdomain cooperativity in T4 lysozyme II: uncovering the C-terminal subdomain as a hidden intermediate in the kinetic folding pathway. Protein Sci 16(5):852–862. doi:10.1110/ps.062632807

    Article  PubMed  CAS  Google Scholar 

  9. Chodera JD, Dill KA, Singhal N, Pande VS, Swope WC, Pitera JW (2007) Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J Chem Phys 126:155,101

    Article  Google Scholar 

  10. Deuflhard P, Weber M (2003) Robust Perron cluster analysis in conformation dynamics. ZIB report 03-09

    Google Scholar 

  11. Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37(1):289–316. doi:10.1146/annurev.biophys.37.092707.153558

    Article  PubMed  CAS  Google Scholar 

  12. Doose S, Neuweiler H, Sauer M (2009) Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. Chem Phys Chem 10(9–10):1389–1398. doi:10.1002/cphc.200900238

    Article  PubMed  CAS  Google Scholar 

  13. Du R, Pande VS, Yu A, Tanaka T, Shakhnovich ES (1998) On the transition coordinate for protein folding. J Chem Phys 108(1):334–350. doi:10.1063/1.475393

    Article  CAS  Google Scholar 

  14. Feng H, Zhou Z, Bai Y (2005) A protein folding pathway with multiple folding intermediates at atomic resolution. Proc Natl Acad Sci USA 102(14):5026–5031. doi:10.1073/pnas.0501372102

    Article  PubMed  CAS  Google Scholar 

  15. Friel CT, Beddard GS, Radford SE (2004) Switching two-state to three-state kinetics in the helical protein Im9 via the optimisation of stabilising non-native interactions by design. J Mol Biol 342:261–273

    Article  PubMed  CAS  Google Scholar 

  16. Gilmanshin R, Williams S, Callender RH, Woodruff, Dyer RB (1997) Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc Natl Acad Sci USA 94:3709–3713

    Article  PubMed  CAS  Google Scholar 

  17. Goldbeck RA, Thomas YG, Chen E, Esquerra RM, Kliger DS (1999) Multiple pathways on a protein-folding energy landscape: kinetic evidence. Proc Natl Acad Sci USA 96(6):2782–2787. http://view.ncbi.nlm.nih.gov/pubmed/10077588

    Article  PubMed  CAS  Google Scholar 

  18. van Gunsteren WF, Berendsen HJC (1990) Computer simulation of molecular dynamics: methodology, applications and perspectives in chemistry. Angew Chem, Int Ed Engl 29:992–1023

    Article  Google Scholar 

  19. Hoang L, Bédard S, Krishna MMG, Lin Y, Englander SW (2002) Cytochrome c folding pathway: kinetic native-state hydrogen exchange. Proc Natl Acad Sci USA 99(19):12,173–12,178. doi:10.1073/pnas.152439199

    Article  CAS  Google Scholar 

  20. Jäger M, Nguyen H, Crane JC, Kelly JW, Gruebele M (2001) The folding mechanism of a beta-sheet: the WW domain. J Mol Biol 311(2):373–393. doi:10.1006/jmbi.2001.4873

    Article  PubMed  Google Scholar 

  21. Jane Wright PEE, Scheraga HAA (2006) The role of hydrophobic interactions in initiation and propagation of protein folding. Proc Natl Acad Sci USA 103(35):13,057–13,061. doi:10.1073/pnas.0605504103

    Article  Google Scholar 

  22. Keller B, Prinz JH, Noé F (2012) Markov models and dynamical fingerprints: unraveling the complexity of molecular kinetics. Chem Phys 396:92–107

    Article  CAS  Google Scholar 

  23. Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE (2004) Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430(6999):586–590. doi:10.1038/nature02655

    Article  PubMed  CAS  Google Scholar 

  24. Kube S, Weber M (2007) A coarse graining method for the identification of transition rates between molecular conformations. J Chem Phys 126(2):024,103+. doi:10.1063/1.2404953

    Article  Google Scholar 

  25. Lindberg MO, Oliveberg M (2007) Malleability of protein folding pathways: a simple reason for complex behaviour. Curr Opin Struct Biol 17(1):21–29. doi:10.1016/j.sbi.2007.01.008

    Article  PubMed  CAS  Google Scholar 

  26. Matagne A, Radford SE, Dobson CM (1997) Fast and slow tracks in lysozyme folding: insight into the role of domains in the folding process. J Mol Biol 267(5):1068–1074. doi:10.1006/jmbi.1997.0963

    Article  PubMed  CAS  Google Scholar 

  27. Mello CC, Barrick D (2004) An experimentally determined protein folding energy landscape. Proc Natl Acad Sci USA 101(39):14,102–14,107. doi:10.1073/pnas.0403386101

    Article  CAS  Google Scholar 

  28. Metzner P, Schütte C, Eijnden EV (2009) Transition path theory for Markov jump processes. Multiscale Model Simul 7:1192–1219

    Article  CAS  Google Scholar 

  29. Metzner P, Schütte C, Vanden-Eijnden E (2006) Illustration of transition path theory on a collection of simple examples. J Chem Phys 125(8). doi:10.1063/1.2335447

  30. Noé F (2008) Probability distributions of molecular observables computed from Markov models. J Chem Phys 128:244,103

    Article  Google Scholar 

  31. Noé F, Doose S, Daidone I, Löllmann M, Chodera JD, Sauer M, Smith JC (2011) Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments. Proc Natl Acad Sci USA 108:4822–4827

    Article  PubMed  Google Scholar 

  32. Noé F, Horenko I, Schütte C, Smith JC (2007) Hierarchical analysis of conformational dynamics in biomolecules: transition networks of metastable states. J Chem Phys 126:155,102

    Article  Google Scholar 

  33. Noé F, Schütte C, Vanden-Eijnden E, Reich L, Weikl TR (2009) Constructing the full ensemble of folding pathways from short off-equilibrium simulations. Proc Natl Acad Sci USA 106:19,011–19,016

    Article  Google Scholar 

  34. Prinz JH, Wu H, Sarich M, Keller B, Fischbach M, Held M, Chodera JD, Schütte C, Noé F (2011) Markov models of molecular kinetics: generation and validation. J Chem Phys 134:174,105

    Article  Google Scholar 

  35. Rao F, Caflisch A (2004) The protein folding network. J Mol Biol 342:299–306

    Article  PubMed  CAS  Google Scholar 

  36. Sarich M, Noé F, Schütte C (2010) On the approximation error of Markov state models. Multiscale Model Simul 8:1154–1177

    Article  Google Scholar 

  37. Schütte C, Fischer A, Huisinga W, Deuflhard P (1999) A direct approach to conformational dynamics based on hybrid Monte Carlo. J Comput Phys 151:146–168

    Article  Google Scholar 

  38. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMAC: fast, flexible and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  39. Sridevi K (2000) The slow folding reaction of barstar: the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain. J Mol Biol 302(2):479–495. doi:10.1006/jmbi.2000.4060

    Article  PubMed  CAS  Google Scholar 

  40. Sridevi K, Lakshmikanth GS, Krishnamoorthy G, Udgaonkar JB (2004) Increasing stability reduces conformational heterogeneity in a protein folding intermediate ensemble. J Mol Biol 337(3):699–711. doi:10.1016/j.jmb.2003.12.083

    Article  PubMed  CAS  Google Scholar 

  41. Street TO, Bradley CM, Barrick D (2007) Predicting coupling limits from an experimentally determined energy landscape. Proc Natl Acad Sci USA 104(12):4907–4912. doi:10.1073/pnas.0608756104

    Article  PubMed  Google Scholar 

  42. Swope WC, Pitera JW, Suits F (2004) Describing protein folding kinetics by molecular dynamics simulations, 1: theory. J Phys Chem B 108:6571–6581

    Article  CAS  Google Scholar 

  43. Vanden-Eijnden E (2006) Transition path theory. In: Computer simulations in condensed matter systems: from materials to chemical biology, vol 1. Springer, Heidelberg, pp 453–493. doi:10.1007/3-540-35273-2_13

    Chapter  Google Scholar 

  44. Vreede J, Juraszek J, Bolhuis PG (2010) Predicting the reaction coordinates of millisecond light-induced conformational changes in photoactive yellow protein. Proc Natl Acad Sci USA 107:2397–2402

    Article  PubMed  CAS  Google Scholar 

  45. Vanden-Eijnden E (2006) Towards a theory of transition paths. J Stat Phys 123(3):503–523. doi:10.1007/s10955-005-9003-9

    Article  Google Scholar 

  46. Vanden-Eijnden E (2010) Transition-path theory and path-finding algorithms for the study of rare events. Annu Rev Phys Chem 61:391–420

    Article  PubMed  Google Scholar 

  47. Weber M (2003) Improved Perron cluster analysis. ZIB report 03-04

    Google Scholar 

  48. Weikl TR (2008) Transition states in protein folding kinetics: modeling phi-values of small beta-sheet proteins. Biophys J 94(3):929–937. http://www.cell.com/biophysj/abstract/S0006-3495(08)70691-X

    Article  PubMed  CAS  Google Scholar 

  49. Yeh SR, Rousseau DL (2000) Hierarchical folding of cytochrome c. Nat Struct Biol 7(6):443–445. doi:10.1038/75831

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Noé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Noé, F., Prinz, JH. (2014). Analysis of Markov Models. In: Bowman, G., Pande, V., Noé, F. (eds) An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation. Advances in Experimental Medicine and Biology, vol 797. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7606-7_6

Download citation

Publish with us

Policies and ethics