Skip to main content

Wheat Domestication: Key to Agricultural Revolutions Past and Future

  • Chapter
  • First Online:
Book cover Genomics of Plant Genetic Resources

Abstract

The domestication of wheat was instrumental in the transition of human behavior from hunter-gatherers to farmers. It was a key event in the agricultural revolution that occurred about 10,000 years ago in the Fertile Crescent of the Middle East. Transitions of forms with natural seed dispersal mechanisms to forms with non-brittle rachises led to the domestication of diploid einkorn and tetraploid emmer wheat in southeast Turkey. These early domesticates were staple crops of early farmers for several thousand years before being replaced by free-threshing wheats. Allopolyploidization, mutations in genes governing threshability and other domestication related traits, and interspecific gene flow led to the formation of today’s economically important bread wheat. Genetics, genomics, and archaeobotany have together provided strong evidence and insights regarding the time, place, and events involved in the evolution and domestication of modern wheat, but numerous questions remain unanswered. Here, I review historical and recent findings that have shaped our current understanding of wheat domestication. Whole-genome sequence analysis, additional genetic studies, and advances in archaeology will likely address our unanswered questions in the future. A thorough and comprehensive understanding of wheat evolution and domestication will provide critical knowledge to the spawning of a new agricultural revolution, which will be necessary to provide sustenance for a rapidly increasing world population under global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaronsohn A (1910) Agricultural and botanical explorations in Palestine. Bull Plant Industry, US Dept Agriculture, Washington, DC No. 180:1–63

    Google Scholar 

  • Bertsch F (1943) Der Dinkel. Landw Jahrbuch 92:241–252

    Google Scholar 

  • Blake NK, Lehfeldt BR, Lavin M, Talbert LE (1999) Phylogenetic reconstruction based on low copy DNA sequence data in an alloploid: the B genome of wheat. Genome 42:351–360

    Article  CAS  PubMed  Google Scholar 

  • Blatter RHE, Jacomet S, Schlumbaum A (2002) Spelt-specific alleles in HMW glutenin genes from modern and historical European spelt (Triticum spelta L.). Theor Appl Genet 104:329–337

    Article  CAS  PubMed  Google Scholar 

  • Blatter RHE, Jacomet S, Schlumbaum A (2004) About the origin of European spelt (Triticum spelta L.): allelic differentiation of the HMW glutenin B1-1 and A1-2 subunit genes. Theor Appl Genet 108:360–367

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Scoles GJ, Hucl P (1997) The genetics of rachis fragility and glume tenacity in semi-wild wheat. Euphytica 94:119–124

    Article  Google Scholar 

  • Chalupska D, Lee HY, Faris JD et al (2008) Acc homoeoloci and the evolution of the wheat genomes. Proc Natl Acad Sci USA 105:9691–9696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Q-F, Yen C, Yang J-L (1998) Chromosome location of the gene for brittle rachis in the Tibetan weed race of common wheat. Genet Res Crop Evol 45:21–25

    Google Scholar 

  • Chuck G, Meeley RB, Hake S (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminant spikelet1. Genes Dev 12:1145–1154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Moulins D (2000) Abu Hereyra 2: plant remains from the Neolithic. In: Moore AMT, Hillman GC, Legge AJ (eds) Village on the Euphrates. Oxford University Press, Oxford, pp 399–422

    Google Scholar 

  • Dixon J, Braun HJ, Kosina PP, Crouch J (2009) Wheat facts and futures. CIMMMYT, Mexico

    Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  Google Scholar 

  • Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dvorak J, di Terlizzi P, Zhang H-B, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31

    Article  CAS  PubMed  Google Scholar 

  • Dvorak J, Luo MC (2001) Evolution of free-threshing and hulled forms of Triticum aestivum: old problems and new tools. In: Caligari PDS, Brandham PE (eds) Wheat taxonomy: the legacy of John Percival. Linnean Society, London, pp 127–136 (Linnean Special Issue 3)

    Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Dvorak J, Akhunov ED, Akhunov AR et al (2006) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol 23:1386–1396

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn A, Asouti E, Near J, Martinoli D (2002) Macro-botanical evidence for plant use at Neolithic Catalhoyuk, south-central Anatolia, Turkey. Veg Hist Archaeobot 11:41–54

    Article  Google Scholar 

  • Faris JD, Gill BS (2002) Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome 45:706–718

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faris JD, Simons KJ, Zhang Z, Gill BS (2005) The wheat super domestication gene Q. Wheat Info Serv 100:129–148

    Google Scholar 

  • Faris JD, Zhang Z, Fellers JP, Gill BS (2008) Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus Q. Funct Integr Genomics 8:149–164

    Article  CAS  PubMed  Google Scholar 

  • Feldman M (2001) Origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book. A history of wheat breeding. Lavoisier Publishing, Paris, pp 3–56

    Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100:903–924

    Article  PubMed Central  PubMed  Google Scholar 

  • Giles RG, Brown TA (2006) GluDy allele variations in Aegilops tasuchii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor Appl Genet 112:1563–1572

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR, Wet MJ de, Price EG (1973) Comparative evolution of cereals. Evolution 27:3110–325

    Article  Google Scholar 

  • Heun M, Schaefer-Pregl R, Klawan D et al (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    Article  CAS  Google Scholar 

  • Hillman GC (1978) On the origins of domestic rye—Secale cereal: the finds from Aceramic Can Hasan III in Turkey. Anatolian Studies 28:157–174

    Article  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X et al (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaaska V (1978) NADP-dependent aromatic alcohol dehydrogenase in polyploid wheats and their relatives. On the origin and phylogeny of polyploid wheats. Theor Appl Genet 53:209–217

    Article  CAS  PubMed  Google Scholar 

  • Jaaska V (1980) Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny. Theor Appl Genet 56:273–284

    Article  CAS  PubMed  Google Scholar 

  • Jaaska V (1981) Aspartate aminotransferase and alcohol dehydrogenase isozymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Plant Syst Evol 137:259–273

    Article  CAS  Google Scholar 

  • Jakubziner MM (1958) New wheat species. In: Jenkins BC (ed) Proceedings of the first international wheat genetics symposium. Winnipeg, pp 207–220

    Google Scholar 

  • Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273

    Article  CAS  PubMed  Google Scholar 

  • Jofuku KD, den Boer BGW, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson BL (1968) Electrophoretic evidence on the origin of Triticum zhukovskyi. In: Finlay KW, Shepherd KW (eds) Proceedings of the Third International Wheat Genetics Symposium. Canberra, Australia, pp 105–110

    Google Scholar 

  • Johnson BL, Dhaliwal HS (1976) Reproductive isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheats. Am J Bot 63:1088–1094

    Article  Google Scholar 

  • Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–476

    Article  CAS  Google Scholar 

  • Kato K, Sonokawa R, Miura H, Sawada S (2003) Dwarfing effect associated with the threshability gene Q on wheat chromosome 5A. Plant Breed 122:489–492

    Article  CAS  Google Scholar 

  • Kerber ER (1964) Wheat: Reconstitution of the tetraploid component (AABB) of hexaploids. Science 143:253–255

    Article  CAS  PubMed  Google Scholar 

  • Kerber ER, Dyck PL (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarossa. Can J Genet Cytol 11:639–647

    Google Scholar 

  • Kerber ER, Rowland GG (1974) Origin of the free threshing character in hexaploid wheat. Can J Genet Cytol 16:145–154

    Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyzer, one of the ancestors of Triticum vulgare. Agriculture and Horticulture 19:13–14 (Tokyo)

    Google Scholar 

  • Kilian B, Ozkan H, Deusch O et al (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24:217–227

    Article  CAS  PubMed  Google Scholar 

  • Kimber G, Sears ER (1987) Evolution in the genus Triticum and the origin of cultivated wheat. In: Heyne EG (ed) Wheat and wheat improvement. 2nd edition. American Society of Agronomy, Madison, pp 154–164

    Google Scholar 

  • Kislev ME (1980) Triticum parvicoccum, the oldest naked wheat. Isr J Bot 28:95–107

    Google Scholar 

  • Kislev ME (1984) Emergence of wheat agriculture. Paleorient 10:61–70 (http://persee.fr/web/revues/home/prescript/article/paleo_0153-9345_1984_num_10_2_940)

  • Kuckuck H (1959) Neuere Arbeiten zur Entstehung der hexaploiden Kulturweizen. Z. Pflanzenzücht 41:205–226

    Google Scholar 

  • Kuckuck H (1979) On the origin of Triticum carthlicum Neyski (= Triticum persicum Vav.). Wheat Inf Serv 50:1–5

    Google Scholar 

  • Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Ae. tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668

    Article  CAS  PubMed  Google Scholar 

  • Li WL, Gill BS (2006) Multiple pathways for seed shattering in the grasses. Funct Integr Genomics 6:300–309

    Article  CAS  PubMed  Google Scholar 

  • Liu Y-G, Tsunewaki K (1991) Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn J Genet 66:617–633

    Article  CAS  PubMed  Google Scholar 

  • Luo MC, Yang ZL, Dvorak J (2000) The Q locus of Iranian and European spelt wheat. Theor Appl Genet 100:602–606

    CAS  Google Scholar 

  • Luo MC, Yang ZL, You FM et al (2007) The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet 114:947–959

    Article  PubMed  Google Scholar 

  • MacKey J (1954) Neutron and X-ray experiments in wheat and revision of the speltoid problem. Hereditas 40:65–180

    Google Scholar 

  • MacKey J (1966) Species relationship in Triticum. Hereditas Supplement 2:237–276

    Google Scholar 

  • Matsuoka Y, Nasuda S (2004) Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet 109:1710–1717

    Article  PubMed  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89, 107–116

    PubMed  Google Scholar 

  • Moore AMT, Hillman GC, Legge AJ (2000) The significance of Abu Hureyra. In: Moore AMT, Hillman GC, Legge AJ (eds) Village on the Euphrates. Oxford University Press, Oxford, pp 475–525

    Google Scholar 

  • Mori N, Ishi T, Ishido T et al (2003) Origins of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proceedings of the 10th International Wheat Genetics Symposium, Paestum, Italy. Istituto Sperimentale per la Cerealicoltura, Rome, pp 25–28

    Google Scholar 

  • Muramatsu M (1963) Dosage effect of the spelta gene q of hexaploid wheat. Genetics 48:469–482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muramatsu M (1979) Presence of the vulgare gene, Q, in a dense-spike variety of Triticum dicoccum Schübl. Report of the Plant Germ-Plasm Institute, Kyoto University, No. 4: pp 39–41

    Google Scholar 

  • Muramatsu M (1985) Spike type in two cultivars of Triticum dicoccum with the spelta gene q compared with the Q-bearing variety liguliforme. Jpn J Breed 35:255–267

    Article  Google Scholar 

  • Muramatsu M (1986) The vulgare super gene, Q: its universality in durum wheat and its phenotypic effects in tetraploid and hexaploid wheats. Can J Genet Cytol 28:30–41

    Google Scholar 

  • Nakai Y (1979) Isozyme variation in Aegilops and Triticum, IV. The origin of the common wheats revealed from the study of esterase isozymes in synthesized hexaploid wheats. Jpn J Genet 54:175–189

    Article  Google Scholar 

  • Nalam VJ, Vales MI, Watson CJW et al (2006) Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theor Appl Genet 112:373–381

    Article  CAS  PubMed  Google Scholar 

  • Nalam VJ, Vales MI, Watson CJW, Johnson EB et al (2007) Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and threshability components of free-threshing habit in common wheat (Triticum aestivum L.). Theor Appl Genet 116:135–145

    Article  PubMed  Google Scholar 

  • Nesbitt M (2001) Wheat evolution: integrating archaeological and biological evidence. In: Caligari PDS, Brandham PE (eds) Wheat taxonomy: the legacy of John Percival. Linnean Society, London, pp 37–59 (Linnean Special Issue 3)

    Google Scholar 

  • Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history of hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and use of underutilized and neglected crops 4: proceedings of the first international workshop on hulled wheats. Castelvecchio Pascoli, Tuscany, pp 41–100

    Google Scholar 

  • Nishikawa K (1974) Alpha-amylase isozymes and phylogeny of hexaploid wheat. In: Sears ER, Sears EMS (eds) Fourth international wheat genetics symposium, vol 1. University of Missouri, Columbia, pp 851–855

    Google Scholar 

  • Nishikawa K, Furuta Y, Wada T (1980) Genetic studies on alpha-amylase isozymes in wheat. III. Intraspecific variation in Aegilops squarrosa and birthplace of hexaploid wheat. Jpn J Genet 55:325–336

    Article  Google Scholar 

  • Ozkan H, Brandolini A, Schafer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in Southeast Turkey. Mol Biol Evol 19:1797–1801

    Article  CAS  PubMed  Google Scholar 

  • Ozkan H, Brandolini A, Pozzi C et al (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor Appl Genet 110:1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Fahima T, Korol AB et al (2011) Genetic analysis of wheat domestication and evolution under domestication. J Exp Bot 62:5051–5061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng JH, Ronin Y, Fahima T et al (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng JH, Sun D, Nevo E (2011) Domestication evolution, genetics and genomics in wheat. Mol Breeding 28:281–301

    Article  CAS  Google Scholar 

  • Renfrew JM (1973) Palaeoethnobotany—the prehistoric food plants of the Near East and Europe. Methuen and Go. Ltd, London, pp 1–248

    Google Scholar 

  • Riley R, Unrau J, Chapman V (1958) Evidence on the origin of the B genome of wheat. J Hered 49:91–98

    Google Scholar 

  • Rodriguez J, Maestra B, Perera E, Diez M et al (2000) Pairing affinities of the B- and G- genome chromosomes of polyploid wheats with those of Aegilops speltoides. Genome 43:814–819

    Article  CAS  PubMed  Google Scholar 

  • Salse J, Chague V, Bolot S et al (2008) New insights into the origin of the B genome of hexaploid wheat: Evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genomics 9:555

    Article  PubMed Central  PubMed  Google Scholar 

  • Sarkar P, Stebbins GL (1956) Morphological evidence concerning the origin of the B genome in wheat. Am J Bot 43:297–304

    Article  Google Scholar 

  • Sax K (1922) Sterility in wheat hybrids. II. Chromosome behavior in partially sterile hybrids. Genetics 7:513–552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sears ER (1956) The systematics, cytology and genetics of wheat. Handb Pflanzenzücht, 2nd Edition, 2:164–187

    Google Scholar 

  • Sharma HC, Waines JG (1980) Inheritance of tough rachis in crosses of Triticum monococcum and T. aegilopoides. J Hered 71:214–216

    Google Scholar 

  • Simonetti MC, Bellomo MP, Laghetti G et al (1999) Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Genet Res Crop Evol 46:267–271

    Article  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN et al (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh MP (1969) Some radiation induced changes at ‘Q’ locus in bread wheat (Triticum aestivum L.). Caryologia 22:119–126

    Article  Google Scholar 

  • Sood S, Kuraparthy V, Bai GH, Gill BS (2009) The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci. Theor Appl Genet 119:341–351

    Article  PubMed  Google Scholar 

  • Syouf M, Abu-Irmaileh BE, Valkoun J, Bdour S (2006) Introgression from durum wheat landraces in wild emmer wheat (Triticum dicoccoides (Körn. ex Asch. et Graibner) Schweinf). Genet Res Crop Evol 53:1165–1172

    Article  CAS  Google Scholar 

  • Taenzler B, Esposti RF, Vaccino P et al (2002) Molecular linkage map of einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genet Res Camb 80:131–143

    Article  CAS  Google Scholar 

  • Tanno K, Willcox G (2006) How fast was wild wheat domesticated? Science 311:1886

    Article  CAS  PubMed  Google Scholar 

  • Tsunewaki K (1966) Comparative gene analysis of common wheat and its ancestral species. II. Waxiness, growth habit and awnedness. Jpn J Bot 19:175–229

    Google Scholar 

  • Watanabe N, Ikebata N (2000) The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica 115:215–220

    Article  Google Scholar 

  • Watkins AE (1940) The inheritance of glume shape in Triticum. J Genet 39:249–264

    Article  Google Scholar 

  • Yan Y, Hsam SLK, Yu JZ et al (2003) HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors. Theor Appl Genet 107:1321–1330

    Article  CAS  PubMed  Google Scholar 

  • Zeder M (2008) Domestication and early agriculture in the Mediterranean Basin: Origin, diffusion, and impact. Proc Natl Acad Sci USA 105:11597–11604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang P, Friebe B, Gill BS (2002) Variation in the distribution of a genome-specific DNA sequence on chromosomes reveals evolutionary relationships in the Triticum and Aegilops complex. Plant Syst Evol 235:169–179

    Article  CAS  Google Scholar 

  • Zhang ZC, Belcram H, Gornicki P et al (2011) Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc Natl Acad Sci USA 108:18737–18742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin D. Faris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Faris, J. (2014). Wheat Domestication: Key to Agricultural Revolutions Past and Future. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7572-5_18

Download citation

Publish with us

Policies and ethics