Skip to main content

Experimental Superheating and Cavitation of Water and Solutions at Spinodal-Like Negative Pressures

  • Conference paper
  • First Online:

Abstract

The superheated liquids are metastable with respect to their vapour, what means they can exist under arid conditions whatever the temperature: capillary liquid residing in arid soils (desert shrubs, Mars sub-surface, …), solutions in the deep Earth crust, or water involved in rapid disequilibrium events (terrestrial or submarine geysers). The superheating state changes the solvent properties of liquids, and so modifies phase transitions (solid–liquid, liquid–vapor) P-T-X conditions. The synthetic fluid inclusion (SFI) enables to fabricate micro-volumes of hand-made liquid dispersed inside quartz, which readily superheat. Volumes of SFI are intermediate between macro-systems, in which superheating is restricted to around −30–35 MPa with very short lifetime, and nanosystems, wherein confinement effects predominate and in which the host size is similar to the one of the critical nucleus of vapour phase (huge nucleation barrier). This volume-to-metastability relationship is still to be defined quantitatively, and we are targeting to combine thermometric classical measurements with spectrometric characterizations, enabling to establish the threshold between micro- and nano-systems precisely. Meanwhile, the experiments performed so far illustrate the diversity of contexts and situations that could be modelled by superheating issues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wagner W, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387–535

    Article  CAS  Google Scholar 

  2. Kiselev SB, Ely JF (2001) Curvature effect on the physical boundary of metastable states in liquids. Physica A 299:357–370

    Article  CAS  Google Scholar 

  3. Skripov VP, Sinitsyn EN, Pavlov PA, Ermakov GV, Muratov GN, Bulanov NV, Baidakov VG (1988) Thermophysical properties of liquids in the metastable (superheated) state. Gordon and Breach Science Publishers, New York

    Google Scholar 

  4. Imre A, Martinas K, Rebelo LPN (1998) Thermodynamics of negative pressures in liquids. J Non-Equilib Thermodyn 23(4):351–375

    Article  CAS  Google Scholar 

  5. Restagno F, Bocquet L, Biben T (2000) Metastability and nucleation in capillary condensation. Phys Rev Lett 84(11):2433–2436

    Article  CAS  Google Scholar 

  6. Morishige K, Yasunaga H (2006) Tensile effect on a confined phase. J Phys Chem B 110:3864–3866

    Article  CAS  Google Scholar 

  7. Bodnar RJ, Binns PR, Hall DL (1989) Synthetic fluid inclusions. VI. Quantitative evaluation of the decrepitation behavior of fluid inclusions in quartz at one atmosphere confining pressure. J Metamorph Geol 7:229–242

    Article  CAS  Google Scholar 

  8. Shmulovich KI, Mercury L, Thiéry R, Ramboz C, El Mekki M (2009) Experimental superheating of water and aqueous solutions. Geochim Cosmochim Acta 73(9):2457–2470

    Article  CAS  Google Scholar 

  9. Thiéry R, Mercury L (2009) Explosive properties of water in volcanic and hydrothermal systems. J Geophys Res 114, B05205. doi:10.1029/2008JB005742

    Article  Google Scholar 

  10. Skripov VP (1992) Metastable states. J Non-Equilib Thermodyn 17:193–236

    CAS  Google Scholar 

  11. Mercury L, Azaroual M, Zeyen H, Tardy Y (2003) Thermodynamic properties of solutions in metastable systems under negative or positive pressures. Geochim Cosmochim Acta 67:1769–1785

    Article  CAS  Google Scholar 

  12. Mercury L, Jamme F, Dumas P (2012) Infrared imaging of bulk water and water-solid interfaces under stable and metastable conditions. Phys Chem Chem Phys 14:2864–2874

    Article  CAS  Google Scholar 

  13. Davitt K, Rolley E, Caupin F, Arvengas A, Balibar S (2010) Equation of state of water under negative pressure. J Chem Phys 133:174507

    Article  Google Scholar 

  14. El Mekki M, Ramboz C, Perdereau L, Shmulovich KI, Mercury L (2009) In: Rzoska SJ, Drozd Rzoska A, et Mazur V (eds) Metastable systems under pressure, NATO science for peace and security series A, chemistry and biology. Springer, Dordrecht, pp 279–292

    Google Scholar 

  15. Blander M, Katz JL (1975) Bubble nucleation in liquids. AIChE J 21(5):833–848

    Article  CAS  Google Scholar 

  16. Debenedetti PG (1996) Metastable liquids. Concepts and principles. Princeton University Press, Princeton

    Google Scholar 

  17. Caupin F, Herbert E (2006) Cavitation in water: a review. CR Phys 6:1000–1017

    Article  Google Scholar 

  18. Roedder E (1967) Metastable superheated ice in liquid-water inclusions under high negative pressure. Science 155:1413–1417

    Article  CAS  Google Scholar 

  19. Green JL, Durben DJ, Wolf GH, Angell CA (1990) Water and solutions at negative pressure: Raman spectroscopic study to −80 megapascals. Science 249:649–652

    Article  CAS  Google Scholar 

  20. Zheng Q, Durben DJ, Wolf GH, Angell CA (1991) Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254:829–832

    Article  CAS  Google Scholar 

  21. Alvarenga AD, Grimsditch M, Bodnar RJ (1993) Elastic properties of water under negative pressures. J Chem Phys 98(11):8392–8396

    Article  CAS  Google Scholar 

  22. Fall A, Rimsditch JD, Bodnar RJ (2009) The effect of fluid inclusion size on determination of homogenization temperature and density of liquid-rich aqueous inclusions. Am Mineral 94:1569–1579

    Article  CAS  Google Scholar 

  23. Smith RM (2006) Superheated water: the ultimate green solvent for separation science. Anal Bioanal Chem 385:419–421

    Article  CAS  Google Scholar 

  24. And CO, Su-in P (2006) Modified superheated water extraction of pesticides from spiked sediment and soil. Anal Bioanal Chem 385:83–89

    Article  Google Scholar 

  25. Barrow MS, Williams PR, Chan H-H, Dore JC, Bellissent-Funel M-C (2012) Phys Chem Chem Phys 14:13255–13261

    Article  CAS  Google Scholar 

  26. Mercury L, Pinti DL, Zeyen H (2004) The effect of the negative pressure of capillary water on atmospheric noble gas solubility in groundwater and palaeotemperature reconstruction. Earth Planet Sci Lett 223:147–161

    Article  CAS  Google Scholar 

  27. Bouzid M, Mercury L, Lassin A, Matray J-M, Azaroual M (2011) In-pore tensile stress by drying-induced capillary bridges inside porous materials. J Coll Interface Sci 355:494–502

    Article  CAS  Google Scholar 

  28. Dayton J (1739) An experience to prove, that water, when agitated by fire, is infinitely more elastic than air in the same circumstances. Philos Trans 41(1):162–166

    Google Scholar 

  29. Reid RC (1976) Superheated liquids. Am Sci 64:146–156

    CAS  Google Scholar 

  30. McManus KJ, Davis RO (1997) Dilation-induced pore fluid cavitation in sands. Géotechnique 47(1):173–177

    Article  Google Scholar 

  31. Or D, Tuller M (2002) Cavitation during desaturation of porous media under tension. Water Resour Res 38(5):1061. doi:10.1029/2001WR000282

    Article  Google Scholar 

Download references

Acknowledgements

This work has received support from the French Agency for Research (Agence Nationale de la Recherche, ANR) through the grants CONGE BLAN-61001 and Labex Voltaire ANR-10-LABX-100-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Mercury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Mercury, L., Shmulovich, K.I. (2014). Experimental Superheating and Cavitation of Water and Solutions at Spinodal-Like Negative Pressures. In: Mercury, L., Tas, N., Zilberbrand, M. (eds) Transport and Reactivity of Solutions in Confined Hydrosystems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7534-3_14

Download citation

Publish with us

Policies and ethics