Skip to main content

Starch Overproduction by Means of Algae

  • Chapter
  • First Online:
Book cover Algal Biorefineries

Abstract

This chapter provides an overview of the state of knowledge of starch production as an ultimate energy reserve in algae. It includes a survey of recent discoveries on controls that direct the metabolism of algal cells towards starch hyper-accumulation with the aim of providing starch-enriched biomass for the production of bioethanol as a biofuel of the future. We also outline basic research from the 1960s, from which the recent starch research stems, although the use of algal starch for biofuel production was not considered at that time. The principles of, and basic approaches to a directed synthesis of starch are described in both laboratory experiments and large scale-up outdoor photobioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FdUrd:

5-fluorodeoxyuridine

CHX:

Cycloheximide

DW:

dry weight

PBR:

photobioreactor

References

  • Bachmann B, Hofmann R, Follmann H (1983) Tight coordination of ribonucleotide reduction and thymidilate synthesis in synchronous algae. FEBS Lett 152:247–250

    Article  CAS  Google Scholar 

  • Baker AL, Schmidt RR (1964a) Further studies on the intracellular distribution of phosphorus during synchronous growth of Chlorella pyrenoidosa. Biochim Biophys Acta 82:336–342

    Article  CAS  Google Scholar 

  • Baker AL, Schmidt RR (1964b) Induced utilization of polyphosphate during nuclear division in synchronously growing Chlorella. Biochim Biophys Acta 93:180–182

    Article  CAS  Google Scholar 

  • Ball SG, Dirick L, Decq A, Martiat JC, Matagne RF (1990) Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Science 66:1–9

    CAS  Google Scholar 

  • Ballin G, Doucha J, Zachleder V, Šetlík I (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of nitrogen starvation. Biol Plant 30:81–91

    Article  CAS  Google Scholar 

  • Behrens PW, Bingham SE, Hoeksema SD, Cohoon DL, Cox JC (1989) Studies on the incorporation of CO2 into starch by Chlorella vulgaris. J Appl Phycol 1:123–130

    Article  Google Scholar 

  • Borowitzka MA (2008) Marine and halophilic algae for the production of biofuels. J Biotechnol 136:7–12

    Article  Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová V (2011) Microalgae—novel highly-efficient starch producers. Biotechnol Bioeng 108:766–776

    Article  PubMed  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Cao HM, Zhang LP, Melis A (2001) Bioenergetic and metabolic processes for the survival of sulfur-deprived Dunaliella salina(Chlorophyta). J Appl Phycol 13:25–34

    Article  CAS  Google Scholar 

  • Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q, Wang C, Wan Y, Wang X, Cheng Y, Deng S, Hennessy K, Lin X, Liu Y, Wang Y, Martinez B, Ruan R (2009) Review of the biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2:1–30

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Cisneros RJ, Zapf JW, Dunlap RB (1993) Studies of 5-fluorodeoxyuridine 5’-monophosphate binding to carboxypeptidase A-inactivated thymidylate synthase from Lactobacillus casei. J Biol Chem 268:10102–10108

    PubMed  CAS  Google Scholar 

  • Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141:993–1008

    Article  PubMed  CAS  Google Scholar 

  • Curnutt SG, Schmidt RR (1964) Possible mechanisms controlling the intracellular level of inorganic polyphosphate during synchronous growth of Chlorella pyrenoidosa. II. ATP/ADP ratio. Biochim Biophys Acta 86:201–203

    Article  PubMed  CAS  Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Mgmt 42:1357–1378

    Article  CAS  Google Scholar 

  • Doran-Peterson J, Jangid A, Brandon SK, DeCrescenzo-Henriksen E, Dien B, Ingram LO (2009) Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production. Meth Mol Biol 581:263–280

    Article  CAS  Google Scholar 

  • Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    Article  PubMed  CAS  Google Scholar 

  • Doušková I, Kaštánek F, Maléterová Y, Kaštánek P, Doucha J, Zachleder V (2010) Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energy Convers Mgmt 51:606–611

    Article  Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335

    Article  CAS  Google Scholar 

  • Duynstee EE, Schmidt RR (1967) Total starch and amylose levels during synchronous growth of Chlorella pyrenoidosa. Arch Biochem Biophys 119:382–386

    Article  PubMed  CAS  Google Scholar 

  • Eriksen NT, Riisgard FK, Gunther WS, Lonsmann Iversen JJ (2007) On-line estimation of O(2) production, CO(2) uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor. J Appl Phycol 19:161–174

    Article  PubMed  CAS  Google Scholar 

  • Fernandes BD, Dragone GM, Teixeira JA, Vicente AA (2010) Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content. Appl Biochem Biotechnol 161:218–26

    Article  PubMed  CAS  Google Scholar 

  • Follmann H (1983) Deoxyribonucleotide biosynthesis: a critical process for life. In: Pullman B, Jortner J (eds) Nucleic acids: the vectors of life. D. Reidel Publishing Company, Jerusalem, pp 547–557

    Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    CAS  Google Scholar 

  • Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88:3464–3467

    Article  CAS  Google Scholar 

  • Herrmann EC, Schmidt RR (1965) Synthesis of phosphorus-containing macromolecules during synchronous growth of Chlorella pyrenoidosa. Biochim Biophys Acta 95:63–75

    Article  PubMed  CAS  Google Scholar 

  • Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    Article  CAS  Google Scholar 

  • Hirokawa T, Hata M, Takeda H (1982) Correlation between the starch level and the rate of starch synthesis during the development cycle of Chlorella ellipsoidea. Plant Cell Physiol 23:813–820

    CAS  Google Scholar 

  • Hon-Nami K (2006) A unique feature of hydrogen recovery in endogenous starch-to-alcohol fermentation of the marine microalga, Chlamydomonas perigranulata. Appl Biochem Biotechnol 131:808–828

    Article  PubMed  Google Scholar 

  • Ike A, Toda N, Tsuji N, Hirata K, Miyamoto K (1997) Hygrogen photoproduction from CO2-fixing microalgal biomass: application of halotolerant photosynthetic bacteria. J Ferment Bioeng 84:606–609

    Article  CAS  Google Scholar 

  • Ji CF, Yu XJ, Chen ZA, Xue S, Legrand J, Zhang W (2011) Effects of nutrient deprivation on biochemical compositions and photo-hydrogen production of Tetraselmis subcordiformis. Intern J Hydrogen Energy (ol) 36:5817–5821

    Article  CAS  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  PubMed  CAS  Google Scholar 

  • Johnson RA, Schmidt RR (1966) Enzymic control of nucleic acid synthesis during synchronous growth of Chlorella pyrenoidosa. I. Deoxythymidine monophosphate kinase. Biochim Biophys Acta 129:140–144

    Article  PubMed  CAS  Google Scholar 

  • Kamiya A, Kowallik W (1986) Blue light-induced starch breakdown in Chlorella cells. Plant Biol 2:671–676

    CAS  Google Scholar 

  • Kaštánek F, Šabata S, Šolcová O, Maléterová Y, Kaštánek P, Brányiková I, Kuthan K, Zachleder V (2010) In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide. Waste Mgmt Res 28:961–966

    Article  Google Scholar 

  • Kelsall DR, Lyons TP (1999) Grain dry milling and cooking for alcohol production: designing for 23 % ethanol and maximum yield. In: Jacques K, Lyons TP, Kelsall DR (eds) The alcohol textbook. Nottingham University Press, Nottingham, pp 7–24

    Google Scholar 

  • Klein U (1987) Intracellular carbon partitioning in Chlamydomonas reinhardtii. Plant Physiol 85:892–897

    Article  PubMed  CAS  Google Scholar 

  • Levi C, Gibbs M (1984) Starch degradation in synchronously grown Chlamydomonas reinhardtii and characterization of the amylase. Plant Physiol 74:459–463

    Article  PubMed  CAS  Google Scholar 

  • Mann G, Schlegel M, Schumann R, Sakalauskas A (2009) Biogas-conditioning with microalgae. Agronomy Res 7:33–38

    Google Scholar 

  • Maršálková B, Širmerová M, Brányik T, Brányiková I, Melzoch K, Zachleder V (2010) Microalgae Chlorella sp. as an alternative source of fermentable sugars. Chem Eng Trans 21:1279–1284

    Google Scholar 

  • Matsumoto M, Yokouchi H, Suzuki N, Ohata H, Matsunaga T (2003) Saccharification of marine microalgae using marine bacteria for ethanol production. Appl Biochem Biotechnol 105–108:247–254

    Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    Article  PubMed  CAS  Google Scholar 

  • Miyachi S, Miyachi S, Kamiya A (1978) Wavelenght effects on photosynthesis carbon metabolism in Chlorella. Plant Cell Physiol 19:277–288

    CAS  Google Scholar 

  • Murakami S, Morimura Y, Takamiya A (1963) Electron microscope studies along cellular cycle in Chlorella ellipsoidea. In studies on microalgae and photosynthetic bacteria. The University of Tokyo Press, Tokyo, pp 65–84

    Google Scholar 

  • Nakamura Y (1983) Change in molecular weight distribution in starch when degraded at different temperatures in Chlorella vulgaris. Plant Sci Lett 30:259–265

    Article  CAS  Google Scholar 

  • Nakamura Y, Miyachi S (1980) Effects of temperature on glycolate metabolism in Chlorella. Plant Cell Physiol 21:1541–1549

    CAS  Google Scholar 

  • Nakamura Y, Miyachi S (1982a) Effect of temperature on starch degradation in Chlorella vulgaris 11h cells. Plant Cell Physiol 23:333–341

    CAS  Google Scholar 

  • Nakamura Y, Miyachi S (1982b) Change in starch photosynthesized at different temperatures in Chlorella. Plant Sci Lett 27:1–6

    Article  CAS  Google Scholar 

  • Nakamura Y, Imamura M (1983) Change in properties of starch when photosynthesized at different temperatures in Chlorella vulgaris. Plant Sci Lett 31:123–131

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2010) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68. doi:10.1016/j.pecs.2010.01.003

    Article  Google Scholar 

  • Percival Zhang Y-H, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  PubMed  CAS  Google Scholar 

  • Rodjaroen S, Juntawong N, Mahakhant A, Miyamoto K (2007) High biomass production and starch accumulation in native green algal strains and cyanobacterial strains of Thailand Kasetsart. J Nat Sci 41:570–575

    Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RR (1966) Intracellular control of enzyme synthesis and activity during synchronous growth of Chlorella. In: Cameron IL, Padilla GM (eds) Cell Synchrony. Academic Press, New York, pp 189–235

    Google Scholar 

  • Semenenko VE, Zvereva MG (1972a) Comparative study on the modification of photobiosynthesis direction in two Chlorella strains during decoupling of cellular functions by extreme temperature. Physiol Plant (Fiziol. Rast.) 19:229–238 (In Russ.)

    Google Scholar 

  • Semenenko VE, Zvereva MG (1972b) Endogenous regulation of photosynthesis and coupled processes. I. On thermolability of repressors of light dependent protein synthetic system in cells of Chlorella. Plant Physiol (Fiziol. Rast.) 19:116–120 (In Russ.)

    Google Scholar 

  • Semenenko VE, Vladimirova MG, Orleanskaja OB (1967) Physiological characteristics of Chlorella under conditions of high extreme temperatures. I. Uncoupling effect of extreme temperatures on the cellular functions of Chlorella. Plant Physiol (Fiziol. Rast.) 14:612–625 (In Russ.)

    Google Scholar 

  • Semenenko VE, Vladimirova MG, Orleanskaja OB, Raikov NI, Kovanova ES (1969) Physiological characteristics of Chlorella sp. K under conditions of high extreme temperatures. II. Changes in biosyntheses, ultrastructure and activity photosynthetical apparatus during uncoupling of cellular functions by extreme temperature. Physiol Plants (Fiziol. Rast.) 16:210–220 (in Russ.)

    Google Scholar 

  • Šetlík I, Berková E, Doucha J, Kubín Š, Vendlová J, Zachleder V (1972) The coupling of synthetic and reproduction processes in Scenedesmus quadricauda. Arch Hydrobiol. Algolog Stud 7:172–217

    Google Scholar 

  • Šetlík I, Ballin G, Doucha J, Zachleder V (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of sulphur starvation. Biol Plant 30:161–169

    Article  Google Scholar 

  • Singh V, Johnston DB, Rausch KD, Tumbleson ME (2010) Improvements in corn to ethanol production technology using Saccharomyces cerevisiae. In Vertes AA, Qureshi N, Blaschek, HP, Yukawa H (eds) Biomass to biofuels: strategy for global industries. Part III: Ethanol and butanol. Wiley, Chippenham, Wiltshire, Great Britain, pp 187–198

    Google Scholar 

  • Sorokin C (1957) Changes in photosynthetic activity in the course of cell development in Chlorella. Physiol Plant 10:659–666

    Article  CAS  Google Scholar 

  • Sundberg I, Nilshammar-Holmvall M (1975) The diurnal variation in phosphate uptake and ATP level in relation to deposition of starch, lipid and polyphosphate in synchronized cells of Scenedesmus. Z Pflanzenphysiol 76:270–279

    Google Scholar 

  • Thu NM, Choi SP, Lee J, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19:161–166

    Article  Google Scholar 

  • Ueda R, Hirayama S, Sugata K, Nakayama H (1996) Process for the production of ethanol from microalgae. US Patent 5(578):472

    Google Scholar 

  • Ueno Y, Kurano N, Miyachi S (1998) Ethanol production by dark fermentation in the marine green Chlorococcum littorale. J Ferment Bioeng 86:38–43

    Article  CAS  Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995) Algae, an introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Voříšek J, Zachleder V (1984) Redistribution of phosphate deposits in the alga Scenedesmus quadricauda deprived of exogenous phosphate—an ultra-cytochemical study. Protoplasma 119:168–177

    Article  Google Scholar 

  • Wanka F, Joppen MMJ, Kuyper CMA (1970) Starch degrading enzymes in synchronous cultures of Chlorella. Z Pflanzenphysiol 62:146–157

    CAS  Google Scholar 

  • Yao C, Ai J, Cao X, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol, 118:438–444

    Google Scholar 

  • Zachleder V (1994) The effect of hydroxyurea and fluorodeoxyuridine on cell cycle events in the chlorococcal alga Scenedesmus quadricauda (Chlorophyta). J Phycol 30:274–279

    Article  CAS  Google Scholar 

  • Zachleder V (1995) Regulation of growth processes during the cell cycle of the chlorococcal alga Scenedesmus quadricauda under a DNA replication block. J Phycol 30:941–947

    Article  Google Scholar 

  • Zachleder V, Kawano S, Kuroiwa T (1996) Uncoupling of chloroplast reproductive events from cell cycle division processes by 5-fluorodeoxyuridine in the alga Scenedesmus quadricauda. Protoplasma 192:228–234

    Article  CAS  Google Scholar 

  • Zachleder V, Ballin G, Doucha J, Šetlík I (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of phosphorus starvation. Biol Plant 30:92–99

    Article  CAS  Google Scholar 

  • Zachleder V, Bišová K, Vítová M, Kubín Š, Hendrychová J (2002) Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors. Eur J Phycol 37:361–371

    Article  Google Scholar 

  • Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Chen ZA, Lu HB, Zhang W (2011) Optimization of carbon dioxide fixation and starch accumulation by Tetraselmis subcordiformis in a rectangular airlift photobioreactor. Afr J Biotechnol 10:1888–1901

    CAS  Google Scholar 

  • Zhukova TS, Klyachko-Gurvich GS, Vladimirova MG, Kurnosova AT (1969) Comparative characterisation of the growth and direction of biosynthesis of various strains of Chlorella under conditions of nitrogen starvation. II. Formation of carbohydrates and lipids. Physiol Plant (Fiziol. Rast.) 16:79–83 (In Russ.)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the projects EUREKA of the Ministry of Education Youth and Sports of the Czech Republic (no. OE 221; no. OE 09025), by project CREST of Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilém Zachleder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zachleder, V., Brányiková, I. (2014). Starch Overproduction by Means of Algae. In: Bajpai, R., Prokop, A., Zappi, M. (eds) Algal Biorefineries. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7494-0_9

Download citation

Publish with us

Policies and ethics