Skip to main content

Microalgae Bioreactors

  • Chapter
  • First Online:
Book cover Algal Biorefineries

Abstract

Photobioreactor design and operation mode are essential steps to ensure a high overall microalgae yield and cell productivities, making viable the commercial production. For this reason, there are trends of research in the field of microalgae that encompass design and development of reactor systems towards maximum productivity with minimum operation costs. In the literature, various photobioreactor designs have been employed such as open ponds, bubble column, flat plate, and tubular (conical, helical, etc.). Open ponds are the most commonly applied photobioreactor design in industrial processes. On the other hand, studies have been focused on tubular photobioreactors due to the possibility of achieving high volumetric productivity and better biomass quality. Therefore, in this chapter, some photobioreactor designs and their characteristics such as geometrical configuration, building material, and cell circulation systems will be discussed. Moreover, the operation mode, such as temperature and pH control, nutrient feeding, CO2 addition systems, flow rate, light supply, mixing, cultivation process and cleanness will also be considered to be important parameters in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DHA:

Docosahexaenoic acid

DO:

Dissolved oxygen

DW:

Dry weight

H/D:

Height to diameter ratio

HDPE:

High Density Polyethylene

LDPE:

Low Density Polyethylene

NER:

Net Energy Ratio

PBR:

Photobioreactor

PBRs:

Photobioreactors

PEP:

Photosynthetic efficiency

PMMA:

Rigid acrylic

PVC:

Poly Vinyl Chloride

TRC:

Transparent rectangular chamber

UV:

Ultraviolet

VAP:

Vertical alveolar panels

VFPP:

Vertical flat-plate photobioreactor

References

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    PubMed  Google Scholar 

  • Ávila-Leon I, Matsudo MC, Sato S, Carvalho JCM (2012) Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source. J Appl Microbiol 112:1086–1094

    PubMed  Google Scholar 

  • Azov Y, Goldman JC (1982) Free ammonium inhibition of algal photosynthesis in intensive culture. Appl Environ Microbiol 43:435–739

    Google Scholar 

  • Barbosa MJGV (2003) Microalgal photobioreactor: scale-up and optimization. Ph.D. Thesis. Wageningen University, The Netherlands

    Google Scholar 

  • Barbosa MJ, Hoogakker J, Wijffels H (2003) Optimisation of cultivation parameters in photobioreactors for microalgae cultivation using the A-stat technique. Biomol Eng 20:115–123

    PubMed  CAS  Google Scholar 

  • Becker EW (1994) Microalgae—Biotechnology and Microbiology. Cambridge University Press, Cambridge, p 293

    Google Scholar 

  • Behrens PW (2005) Photobioreactors and fermentors: the light and dark sides of growing algae In: Andersen RA (ed) Algal culturing techniques. Elsevier academic press, London, p 189–204

    Google Scholar 

  • Belay A (1997) Mass culture of Spirulina Outdoors In: Vonshak A (ed) Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. Taylor and Francis, London p 131–158

    Google Scholar 

  • Belkin S, Boussiba S (1991) High internal ph conveys ammonia resistance in S. platensis. Bioresour Technol 32:167–169

    Google Scholar 

  • Ben-Amotz A, Avron M (1989) The biotechnology of mass culturing Dunaliella for products of commercial interest. In: Cresswell RC, Rees TAV, Shah N (eds) Algal and Cyanobacterial Biotechnol. Longman Scientific & Technical, Essex p 91–114

    Google Scholar 

  • Berberoglu H (2008) Photobiological hydrogen production and carbon dioxide sequestration. University of California, Los Angeles

    Google Scholar 

  • Bernhard M, Zattera A, Filesi P (1966) Suitability of various substances for use in the culture of marine organisms. Pubblicazioni della Stazione Zoologica di Napoli 35:89–104

    Google Scholar 

  • Bezerra RP, Matsudo MC, Converti A, Sato S, Carvalho JCM (2008) Influence of the ammonium chloride feeding time and the light intensity on the cultivation of Spirulina (Arthrospira) platensis. Biotechnol Bioeng 100:297–305

    PubMed  CAS  Google Scholar 

  • Binaghi L, Del Borghi A, Lodi A, Converti A, Del Borghi M (2003) Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochem 38:1341–1346

    CAS  Google Scholar 

  • Blankley WF (1973) Toxicity and inhibitory materials associated with culturing. In: Stein JR (ed) Handbook of phycological methods. I. Culture methods and growth measurements. Cambridge University Press, New York, p 207–229

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    CAS  Google Scholar 

  • Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Elsevier academic press, London, p 205--218

    Google Scholar 

  • Borzani W (2001) Fermentação semicontínua. In: Schmidell-Neto W, Almeida-Lima U, Aquarone E, Borzani W (eds) Biotecnologia Industrial, vol. 2. Edgar Blücher, São Paulo, p 219–222

    Google Scholar 

  • Boussiba S (1989) Ammonia uptake in the alkalophilic cyanobacterium Spirulina platensis. Plant Cell Physiol 30:303–308

    CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    CAS  Google Scholar 

  • Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81:305–315

    PubMed  CAS  Google Scholar 

  • Carvalho JMC, Sato S (2001) Fermentação descontínua alimentada. In: Schmidell-Neto W, Almeida-Lima U, Aquarone E, Borzani W (eds) Biotecnologia Industrial, vol. 2 Edgar Blücher, São Paulo, p 205–218

    Google Scholar 

  • Carvalho AP, Meireleles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    PubMed  CAS  Google Scholar 

  • Carvalho JCM, Bezerra RP, Matsudo MC, Sato S (2013) Cultivation of Arthrospira (Spirulina) platensis by fed-batch process. In: Lee JW (ed) Advanced Biofuels and Bioproducts. Springer, New York, p 781–805

    Google Scholar 

  • Carvalho JCM, Francisco FR, Almeida KA, Sato S, Converti A (2004) Cultivation of Arthrospira (Spirulina) platensis by fed-batch addition of ammonium chloride at exponentially-increasing feeding rate. J Phycol 40:589–597

    CAS  Google Scholar 

  • Carvalho JCM, Sato S, Converti A, Bezerra RP, Matsudo MC, Vieira DCM, Ferreira LS, Rodrigues MS(applicants) (2009) Método de aproveitamento de dióxido de carbono e seu uso no cultivo de microrganismos fotossintetizantes. Brazil Patent Application No 0805123-2, Publication No 1998, p 82 (published Apr. 22, 2009)

    Google Scholar 

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends in Biotechnol 14(11):421–426

    CAS  Google Scholar 

  • Chen RC, Reese J, Fan LS (1994) Flow structure in a three-dimensional bubble column and three-phase fluidized bed. Adv Chem Eng 40:1093–104

    CAS  Google Scholar 

  • Chen T, Zhang W, Yang F, Bai Y, Wong Y (2006) Mixotrophic culture of high selenium-enriched Spirulina platensis on acetate and the enhanced production of photosynthetic pigments. Enzym Microb Technol 39:103–107

    CAS  Google Scholar 

  • Chen CY, Saratale GD, Lee CM, Chen PC, Chang JS (2008) Phototrophichydrogen production in photobioreactors coupled with solar-energy-excitedoptical fibers. Int J Hydrog Energy 33:6878–6885

    Google Scholar 

  • Chisti Y (2006) Microalgae as sustainable cell factories. Environ Eng Manag J 5:261–274

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    PubMed  CAS  Google Scholar 

  • Choi SL, Suh IS, Lee CG (2003) Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzym Microb Technol 33:403–409

    CAS  Google Scholar 

  • Converti A, Lodi A, Del Borghi A, Solisio C (2006) Cultivation of Spirulina platensis in a combined airlift-tubular reactor system. Biochemical Eng J 32:13–18

    CAS  Google Scholar 

  • Cornet JF, Dussap CG, Gros JB (1998) Kinects and energetics of photosynthetic micro-organisms in photobioreactors. Application to Spirulina growth. Adv Biochem Eng/Biotechnol 59:155–194

    Google Scholar 

  • Cuaresma M, Janssen M, End EJVD, Vílchez C, Wijffels RH (2011) Luminostat operation: a tool to maximize microalgae photosynthetic efficiency in photobioreactors during the daily light cycle? Bioresour Technol 102:7871–7878

    PubMed  CAS  Google Scholar 

  • Danesi EDG, Rangel-Yagui CO, Carvalho JCM, Sato S (2002) An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass and Bioenergy 23:261–269

    CAS  Google Scholar 

  • Das P, Aziz SS, Obbard JP (2011) Two phase microalgae growth in the open system for enhanced lipid productivity. Renew Energy 36:2524–2528

    CAS  Google Scholar 

  • De Beer D, Stoodley P, Lewandowski Z (1994) Liquid flow in heterogeneous biofilms. Biotechnol Bioeng 44:636–641

    PubMed  CAS  Google Scholar 

  • Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94

    PubMed  CAS  Google Scholar 

  • Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    PubMed  Google Scholar 

  • Demain A, Davies J (1999) Manual of industrial microbiology and biotechnology. Washington. DC., ASM

    Google Scholar 

  • Demirbas A, Demirbas MF (2010) Algae energy—algae as a new source of biodiesel. Springer-Verlag, London

    Google Scholar 

  • Doucha J, Livanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826

    CAS  Google Scholar 

  • Doucha J, Livanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117

    CAS  Google Scholar 

  • Dyer DL, Richardson DE (1962) Materials of construction in algal culture. Appl Microb 10:129–131

    CAS  Google Scholar 

  • Fernández FGA, Sevilla JMF, Pérez JAS, Grima EM, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56:2721–2732

    Google Scholar 

  • Ferreira LS, Rodrigues MS, Converti A (2010) A new approach to ammonium sulphate feeding for fed-batch Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor. Biotechnol Prog 26:1271–1277

    PubMed  CAS  Google Scholar 

  • Ferreira LS, Rodrigues MS, Converti A, Sato S, Carvalho JCM (2012a) Kinetic and growth parameters of Arthrospira (Spirulina) platensis cultivated in tubular photobioreactor under different cell circulation systems. Biotechnol Bioeng 109:444–450

    CAS  Google Scholar 

  • Ferreira LS, Rodrigues MS, Converti A, Sato S, Carvalho JCM (2012b) Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: use of no-cost CO2 from ethanol fermentation. Appl Energy 92:379–385

    CAS  Google Scholar 

  • Fontes AG, Moreno J, Vargas MA (1989) Analysis of the biomass quality and photosynthetic efficiency of a nitrogen-fixing cyanobacterium grown outdoors with two agitation systems. Biotechnol Bioeng 34:819–824

    PubMed  CAS  Google Scholar 

  • García-Malea MC, Acién FG, Fernández JM, Cerón MC, Molina E (2006) Continuous production of green cells of Haematococcus pluvialis: modeling of the irradiance effect. Enzyme Microb Technol 38:981–989

    Google Scholar 

  • Garcia-Malea Lopez MC, Del Rio Sanchez E, Casas Lopez JL, Acien Fernandez FG, Fernandez Sevilla JM, Rivas J, Guerrero MG, Molina-Grima E (2006) Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J Biotechnol 123:329–342

    CAS  Google Scholar 

  • Grobbelaar JU, Nedbal L, Tichý V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8:335–343

    CAS  Google Scholar 

  • Gudin C, Chaumont D (1991) Cell fragility—the key problem of microalgae mass production in closed photobioreactor. Bioresour Technol 38:145–151

    Google Scholar 

  • Haque MW, Nigam KDP, Joshi JB (1986) Optimum gas sparger design for bubble columns with a low height to diameter ratio. Chem Eng J 33:63–69

    CAS  Google Scholar 

  • Hattori A, Myers J (1966) Reduction of nitrate and nitrite by subcellular preparations of Anabaena cylindrica. I. Reduction of nitrite to ammonia. J Plant Physiol 41:1031

    CAS  Google Scholar 

  • Hsieh C-H, Wu W-T (2009) A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae. Biochem Eng J 46:300–305

    CAS  Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60

    PubMed  CAS  Google Scholar 

  • Hu Q, Kuran N, Kawachi M, Iwasaki I, Miyachi A (1998) Ultrahigh-cell-density culture of a marine alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662

    CAS  Google Scholar 

  • Janssen M, Slenders P, Tramper J, Mur LR, Wijffels RH (2001) Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme and Microb Technol 29:298–305

    CAS  Google Scholar 

  • Janssen FJJ, Van IJzendoorn LJ, Schoo HFM, Sturm JM, Andersson GG, Denier van der G AW, Brongersma HH, de Voigt MJA (2002) Degradation effects in poly para-phenylene vinylene derivatives due to controlled oxygen exposure. Synthetic Metals 131(1–3):167–174

    CAS  Google Scholar 

  • Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresour Technol 98:288–295

    PubMed  CAS  Google Scholar 

  • Kaidi F, Rihani R, Ounnar A, Benhabyles L, Naceur MW (2012) Photobioreactor Design for Hydrogen Production. Procedia Eng 33:492–498

    CAS  Google Scholar 

  • Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Industrial Eng Chemistry Research 49:3516–3526

    CAS  Google Scholar 

  • Lau R, Mo R, Sim WSB (2010) Bubble Characteristics in shallow bubble column reactors. Chem Eng Res Des 88:197–203

    CAS  Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: Their limitation and potential. J Appl Phycol 13:307–315

    Google Scholar 

  • Lee YK, Low CS (1992) Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnol Bioeng 40:1119–1122

    PubMed  CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    PubMed  CAS  Google Scholar 

  • Lodi A, Binaghi L, De Faveri D, Carvalho JCM, Converti A, Del Borghi M (2005) Fed-batch mixotrophic cultivation of Arthrospira (Spirulina) platensis (Cyanophyceae) with carbon source pulse feeding. Annals of Microbiol 55:181–185

    CAS  Google Scholar 

  • Lopez-Elias JA, Voltolina D, Enríquez-Ocaná F, Gallegos-Simental G (2005) Indoor and outdoor mass production of the diatom Chaetoceros muelleri in a mexican commercial hatchery. Aquacultural Eng 33:181–191

    Google Scholar 

  • Loubiere K, Pruvost J, Aloui F, Legrand J (2011) Investigations in an external-loop airlift photobioreactor with annular light chambers and swirling flow. Chem Eng Res Des 89:164–171

    CAS  Google Scholar 

  • Markl H, Bronnenmeier R, Wittek B (1991) The resistance of microorganisms to hydrodynamic stress. Int Chem Eng 31:185–197

    Google Scholar 

  • Márquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Fermentation Bioeng 76:408–410

    Google Scholar 

  • Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, Hansen UP (2005) A photobioreactor system for computer controlled cultivation of microalgae. J Appl Phycol 17:535–549

    CAS  Google Scholar 

  • Masojídek j, Kopecký J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Industrial Microbiol Biotechnol 38:307–317

    Google Scholar 

  • Masojídek J, Papáček Š, Sergejevová M, Jirka V, Červený J, Kunc J, Korečko J, Verbovikova O, Kopecký J, Štys D, Torzillo G (2003) A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance. J Appl Phycol 15:239–248

    Google Scholar 

  • Matsudo MC, Bezerra RP, Sato S, Perego P, Converti A, Carvalho JCM (2009) Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochem Eng J 43:52–57

    CAS  Google Scholar 

  • Matsudo MC, Bezerra RP, Converti A, Sato S, Carvalho JCM (2011) Use of CO2 from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source. Biotechnol Prog 27:650–656

    PubMed  CAS  Google Scholar 

  • Matsudo MC, Bezerra RP, Sato S, Converti A, Carvalho JCM (2012) Photosynthetic efficiency and rate of CO2 assimilation by Arthrospira (Spirulina) platensis continuously cultivated in tubular photobioreactor. Biotechnol J 7:1412–1417

    PubMed  CAS  Google Scholar 

  • Maxon WD (1954) Continuous fermentation. a discussion of its principles and application. Appl Microbiol 3:110–122

    Google Scholar 

  • Merchuk JC, Ronen M, Giris S, Arad S (1998) Light-dark cycles in the growth of the red microalga Porphyridium sp. Biotechnol Bioeng 59:705–713

    PubMed  CAS  Google Scholar 

  • Miyamoto K, Wable O, Benemann JR (1988) Vertical tubular reactor for microalgae cultivation. Biotechnol Lett 10:703–708

    Google Scholar 

  • Molina Grima E (1999) Microalgae, mass culture methods. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation, vol. 3. Wiley, New York

    Google Scholar 

  • Molina Grima E, Acién FFG, García Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247

    CAS  Google Scholar 

  • Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    PubMed  CAS  Google Scholar 

  • Morita M, Watanabe Y, Saiki H (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng 69:693–698

    PubMed  CAS  Google Scholar 

  • Morocho-Jácome AL, Converti A, Sato S, Carvalho JCM (2012) Kinetic and thermodynamic investigation of Arthrospira (Spirulina) platensis fed-batch cultivation in a tubular photobioreactor using urea as nitrogen source. J Chem Technol Biotechnol 87:1574–1583

    Google Scholar 

  • Ogbonna JC, Tanaka H (1997) Industrial-size photobioreactors. Chemtech 27:43–49

    CAS  Google Scholar 

  • Ogbonna JC, Toshihiki S, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J Biotechnol 70:289–297

    PubMed  CAS  Google Scholar 

  • Olguín E, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257

    Google Scholar 

  • Pamboukian CRD (2003) Utilização de processos contínuos para a produção do antitumaral retamicina por Sreptomyces olindensis. In: XIV SINAFERM: Anais. Florianópolis

    Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    PubMed  CAS  Google Scholar 

  • Perner-Nochta I, Posten C (2007) Simulations of light intensity variation in photobioreactors. J Biotechnol 131:276–285

    PubMed  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    CAS  Google Scholar 

  • Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. Adv in Biochem Eng/Biotechnol 59:124–154

    Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol and Biotechnol 57:287–293

    CAS  Google Scholar 

  • Quesnel LB (1987) Sterilization and Sterility. In: Bu’Lock J, Kristiansen B (eds) Basic Biotechnology, chapter 7. Academic Press Ltd, London, pp 197–215

    Google Scholar 

  • Raehtz KD (2009) Challenges and advances in making microalgae biomass a cost efficient source of biodiesel. Basic Biotechnology eJournal 5(1). http://ejournal.vudat.msu.edu/index.php/mmg445/rt/printerFriendly/378/360

  • Reyna-Velarde R, Cristiani-Urbina E, Hernández-Melchora DJ, Thalassoa F, Cañizares-Villanuevaa RO (2010) Hydrodynamic and mass transfer characterization of a flat-panel airlift photobioreactor with high light path. Chem Eng Process Process Intensif 49:97–103

    CAS  Google Scholar 

  • Richmond A (1986) Outdoor mass cultures of microalgae. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, p 285

    Google Scholar 

  • Richmond A, Becker EW (1986) Technological aspects of mass cultivation—A general outline. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, p 245–264

    Google Scholar 

  • Richmond A, Grobbelaar JU (1986) Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10:253–264

    Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12:441–451

    Google Scholar 

  • Rodrigues MS, Ferreira LS, Converti A, Sato S, Carvalho JCM (2010) Fed-batch cultivation of Arthrospira (Spirulina) platensis: potassium nitrate and ammonium chloride as simultaneous nitrogen sources. Bioresour Technol 101:4491–4498

    PubMed  CAS  Google Scholar 

  • Rodrigues MS, Ferreira LS, Converti A, Sato S, Carvalho JCM (2011) Influence of ammonium sulphate feeding time on fed-batch Arthrospira (Spirulina) platensis cultivation and biomass composition with and without pH control. Bioresour Technol 102:6587–6592

    PubMed  CAS  Google Scholar 

  • Rodríguez-Maroto JM, Jiménez C, Aguilera J, Niell FX (2005) Air bubbling results in carbon loss during microalgal cultivation in bicarbonate-enriched media: experimental data and process modeling. Aquacultural Eng 32:493–508

    Google Scholar 

  • Rosa APC, Carvalho LF, Goldbeck L, Costa JAV (2011) Carbon dioxide fixation by microalgae cultivated in open bioreactors. Energy Convers Manag 52:3071–3073

    Google Scholar 

  • Sanchez Miron A, Ceron Garcia M, Garcia Camacho F, Molina Grima E, Chisti Y (2002) Growth and characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzyme Microb Technol 31:1015–1023

    CAS  Google Scholar 

  • Sánchez Mirón A, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270

    Google Scholar 

  • Sánchez Pérez JA, Rodríguez Porcel EM, Casas López JL, Fernández Sevilla JM, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124:1–5

    Google Scholar 

  • Sánchez-Luna LD, Converti A, Tonini GC, Sato S, Carvalho JCM (2004) Continuous and pulse feedings of urea as a nitrogen source in fed-batch cultivation of Spirulina platensis. Aquac Eng 31:237–245

    Google Scholar 

  • Sánchez-Luna LD, Bezerra RP, Matsudo MC, Sato S, Converti A, Carvalho JCM (2007) Influence of pH, temperature and urea molar flowrate on Arthrospira platensis fed-batch cultivation. A kinetic and thermodynamic approach. Biotechnol Bioeng 9:702–711

    Google Scholar 

  • Santos AM, Janssen M, Lamers PP, Evers WAC, Wijffels RH (2012) Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions. Bioresour Technol 104:593–599

    PubMed  CAS  Google Scholar 

  • Sassano CEN, Carvalho JCM, Gioielli LA, Sato S, Torre P, Converti A (2004) Kinetics and bioenergetics of Spirulina platensis cultivation by fed-batch addition of urea as nitrogen source. Appl Biochem Biotechnol 112:143–150

    PubMed  CAS  Google Scholar 

  • Sassano CEN, Gioielli LA, Almeida KA, Sato S, Perego P, Converti A, Carvalho JCM (2007) Cultivation of Spirulina platensis by continuous process using ammonium chloride as nitrogen source. Biomass Bioener 31:593–598

    CAS  Google Scholar 

  • Sassano CEN, Gioielli LA, Ferreira LS, Rodrigues MS, Sato S, Converti A, Carvalho JCM (2010) Evaluation of the composition of continuously-cultivated Arthrospira (Spirulina) platensis using ammonium chloride as nitrogen source. Biomass Bioener 34:1732–1738

    CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx U, Mussgnug JH, Posten C, Kurse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioener Res 1:20–42

    Google Scholar 

  • Schlösser UG (1982) Sammlung von Algenkulturen. Berlin Deutsche Botanische Gesellschaft. 95:181–276

    Google Scholar 

  • Schneider D (2006) Grow your own?: would the widespread adoption of biomass-derived transportation fuels really help the environment. Am Sci 94:408–409

    Google Scholar 

  • Scoma A, Giannelli L, Faraloni C, Torzillo G (2012) Outdoor H2 production in a 50-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii. J Biotechnol 157:620–627

    PubMed  CAS  Google Scholar 

  • Shah YT, Kelka BG, Godbole SP, Deckwer W-D (1982) Design parameters estimations for bubble column reactors. Am Inst Chem Eng J 28:353–379

    CAS  Google Scholar 

  • Shimamatsu H (2004) Mass production of Spirulina, an edible microalga. Hydrobiologia 512:39–44

    Google Scholar 

  • Siegel MH, Robinson CW (1992) Applications of airlift gas-liquid-solid reactors in biotechnology. Chem Eng Sci 47(13/14):3215–3229

    CAS  Google Scholar 

  • Silva HJ, Cortifas T, Ertola RJ (1987) Effect of hydrodynamic stress on Dunaliella growth. J Chem Technol Biotechnol 40:40–49

    Google Scholar 

  • Silva PC, Basson PW, Moe RL (1996) Catalogue of the Benthic Marine Algae of the Indian Ocean, vol 79. University of California Publications in Botany, Berkeley, p 1259

    Google Scholar 

  • Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production—a review. Renew Sustain Energy Rev 16:2347–2353

    CAS  Google Scholar 

  • Sobczuk TM, Camacho FG, Rubio FC, Fernández FG, Grima EM (2000) Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng 67:465–475

    CAS  Google Scholar 

  • Soletto D, Binaghi L, Ferrari L, Lodi A, Carvalho JCM, Zilli M, Converti A (2008) Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem Eng J 39:369–375

    CAS  Google Scholar 

  • Sonnleitner B (1999) Instrumentation of small scale bioreactors. In: Demain AL, Davies JE (eds) Manual of Industrial Microbiology and Biotechnology. ASM Press. DC, Washington, p 221–235

    Google Scholar 

  • Torre P, Sassano CEN, Sato S et al (2003) Fed-batch addition of urea for Spirulina platensis cultivation. Thermodynamics and material and energy balances. Enzyme Microbiol Technol 33:698–707

    CAS  Google Scholar 

  • Torzillo G (1997) Tubular bioreactors. In: Vonshak A (ed) Spirulina platensis (Arthrospira): phisiology, cell-biology and biotechnology. Taylor and Francis, London, p 101–115

    Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Publishing, Oxford, p 178–214

    Google Scholar 

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    PubMed  CAS  Google Scholar 

  • Tredici MR, Carlozzi P, Chini G, Materassi R (1991) A vertical alveolar panel for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Technol 38:153–159

    Google Scholar 

  • Ugwu CU, Ogbonna JC, Tanaka H (2002) Improvement of mass transfer characteristics of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607

    PubMed  CAS  Google Scholar 

  • Ugwu CU, Ogbonna JC, Tanaka H (2003) Design of static mixers for inclined tubular photobioreactors. J Appl Phycol 15:217–223

    CAS  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    PubMed  CAS  Google Scholar 

  • Valderrama G, Cardenas A, Markovits A (1987) On the economics of Spirulina production in Chile with details on drag-board mixing in shallow ponds. Hydrobiologia 151/152:71–74

    Google Scholar 

  • Vasumathi KK, Premalatha M, Subramanian P (2012) Parameters influencing the design of photobioreactor for the growth of microalgae. Renew Sustain Energy Rev 16:5443–5450

    CAS  Google Scholar 

  • Vega-Estrada J, Montes-Horcasitas MC, Dominigues-Bocanegra AR, Canizares-Villanueva RO (2005) Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift photobioreactor under aeration conditions avoiding cell damage. Appl Microbiol Biotechnol 68:31–35

    PubMed  CAS  Google Scholar 

  • Vieira DCM, Matsudo MC, Sato S, Converti A, Carvalho JCM (2012) Simultaneous use of urea and potassium nitrate for Arthrospira (Spirulina) platensis cultivation. Biotechnol J 7:649–655

    PubMed  CAS  Google Scholar 

  • Vonshak A (1997a) Spirulina: growth, physiology and biochemistry. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor and Francis, London, p 43–66

    Google Scholar 

  • Vonshak A (1997b) Outdoor Mass Production of Spirulina: the basic concept. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor and Francis, London, p 79–99

    Google Scholar 

  • Vonshak A, Cheung SM, Chen F (2000) Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (Cyanobacteria) cells to light. J Phycol 36:675–679

    CAS  Google Scholar 

  • Watanabe Y, Hall DO (1995) Photosynthetic CO2 fixation technologies using a helical tubular bioreactor incorporating the filamentous cyanobacterium Spirulina platensis. Energy Convers Manag 36:721–724

    CAS  Google Scholar 

  • West JA (2005) Long-term microalgal culture maintenance. In: Andersen RA (ed) Algal Culturing Techniques. Elsevier Academic Press, London, p 157–165

    Google Scholar 

  • Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: Challenges and opportunities. Eng in. Life Sci 9:178–189

    CAS  Google Scholar 

  • Xu L, Wang F, Guo C, Liu CZ (2012) Improved algal oil production from Brotryococcus braunii by feeding nitrate and phosphate in an airlift bioreactor. Eng Life Sci 12:171–177

    CAS  Google Scholar 

  • Yamane T, Shimizu S (1984) Fed-batch techniques in microbial processes. Adv Biochem Eng/Biotechnol 30:148–194

    Google Scholar 

  • Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74

    PubMed  CAS  Google Scholar 

  • Zhang K, Kurano N, Miyachi S (2002) Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosyst Eng 25:97–101

    PubMed  CAS  Google Scholar 

  • Zimmerman WB, Zandi M, Bandulasena HCH, Tesař V, Gilmour DJ, Ying K (2011) Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina. Appl Energy 88:3357–3369

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João C. M. Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carvalho, J., Matsudo, M., Bezerra, R., Ferreira-Camargo, L., Sato, S. (2014). Microalgae Bioreactors. In: Bajpai, R., Prokop, A., Zappi, M. (eds) Algal Biorefineries. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7494-0_4

Download citation

Publish with us

Policies and ethics