Skip to main content

Biomass Conversion to Bioenergy Products

  • Chapter
  • First Online:

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 26))

Abstract

The rendering of bioenergy products such as heat, fuel and electricity requires the conversion of sustainably produced biomass feedstock by means of thermochemical and biological processes. Such processes convert feedstocks into higher energy-value products amenable to industrial and domestic applications. This chapter deals with the nature of the conversion processes, the biomass feedstock requirements for these processes and the resulting quality of bioenergy products. In addition, the present chapter will also consider the application potential of different conversion technologies to both industrial and rural areas in the Southern Hemisphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    PubMed  CAS  Google Scholar 

  • Alvira P, Tomás-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    PubMed  CAS  Google Scholar 

  • Amigun B, Gorgens J, Knoetze JH (2010) Biomethanol production from gasification of non-woody plant in South Africa: optimum scale and economic performance. Energy Policy 38:312–322

    CAS  Google Scholar 

  • Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD, Dutta A (2010) Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89:S29–S35

    CAS  Google Scholar 

  • Antal MJ, Grønli M (2003) The art, science and technology of charcoal production. Ind Eng Chem Res 42:1619–1640

    CAS  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848

    CAS  Google Scholar 

  • Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res 3:82–92

    Google Scholar 

  • Benjamin MM, Woods SL, Ferguson JF (1984) Anaerobic toxicity and biodegradability of pulp mill waste constituents. Water Res 18:601–607

    CAS  Google Scholar 

  • Bergman PCA, Boersma AR, Zwart RWR, Kiel JHA (2005) Torrefaction for biomass co-firing in existing coal-fired power stations: BIOCOAL. ECN report. ftp://kernenergie.nl/pub/www/library/report/2005/c05013.pdf

  • Bhattacharya P, Steele PH, Hassan EBM, Mitchell B, Ingram L, Pittman CU Jr (2009) Wood/plastic copyrolysis in an auger reactor: chemical and physical analysis of the products. Fuel 88:1251–1260

    CAS  Google Scholar 

  • Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87:844–856

    CAS  Google Scholar 

  • Bridgwater AV (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74:631–653

    CAS  Google Scholar 

  • Bridgwater AV (2011) Review of fast pyrolysis of biomass and product upgrading. Biomass bioenergy 38:1–27

    Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1–73

    CAS  Google Scholar 

  • Bridgwater AV, Toft AJ, Brammer JG (2002) A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew Sustain Energy Rev 6(833):181–248

    CAS  Google Scholar 

  • Brown TR, Thilakaratne R, Brown RC, Hu G (2013) Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel 106:463–469

    CAS  Google Scholar 

  • Brownsort PA (2009) Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits. Dissertation, University of Edinburgh, Edinburgh

    Google Scholar 

  • Butler E, Devlin G, Meier D, McDonnell K (2011) A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renew Sustain Energy Rev 15:4171–4186

    CAS  Google Scholar 

  • Calzavara Y, Joussot-Dubien C, Boissonnet G, Sarrade S (2005) Evaluation of biomass gasification in supercritical water process for hydrogen production. Energy Convers Manag 46:615–631

    CAS  Google Scholar 

  • Carrier M, Hugo T, Gorgens J, Knoetze JH (2011) Comparison of slow and vacuum pyrolysis of sugar cane bagasse. J Anal Appl Pyrolysis 90:18–26

    CAS  Google Scholar 

  • Çetinkol OP, Dibble DC, Cheng G, Kent MS, Knierim B, Auer M, Wemmer DE, Pelton JG, Melnichenko YB, Ralph J, Simmons BA, Holmes BM (2010) Understanding the impact of ionic liquid pretreatment on eucalyptus. Biofuels 1(1):33–46

    Google Scholar 

  • Chen G, Andries J, Luo Z, Spliethoff H (2003) Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects. Energy Convers Manag 44:1875–1884

    CAS  Google Scholar 

  • Cheng S, D’cruz I, Wang M, Leitch M, Xu CC (2010) Highly efficient liquefaction of woody biomass in hot-compressed alcohol-water Co-solvents. Energy Fuel 24:4659–4667

    CAS  Google Scholar 

  • Cullis IF, Saddler JN, Mansfield SD (2004) Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnol Bioeng 85(4):413–421

    PubMed  CAS  Google Scholar 

  • Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598

    CAS  Google Scholar 

  • Czernik S, French R, Feik C, Chornet E (2002) Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Ind Eng Chem Res 41:4209–4215

    CAS  Google Scholar 

  • Dahmen N, Dinjus E, Kolb T, Arnold U, Leibold H, Stahl R (2012) State of the art of the bioliq® process for synthetic biofuels production. Environ Prog Sustain Energy 31:176–181

    CAS  Google Scholar 

  • Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 31:171–192

    CAS  Google Scholar 

  • Demirbas A, Arin G (2002) An overview of biomass pyrolysis. Energy Sources 24:471–482

    CAS  Google Scholar 

  • Diedericks D, van Rensburg E, García-Aparicio MP, Görgens JF (2012) Enhancing the enzymatic digestibility of sugarcane bagasse through the application of an ionic liquid in combination with an acid catalyst. Biotechnol Prog 28(1):76–84

    PubMed  CAS  Google Scholar 

  • Dwivedi P, Alavalapati JRR (2008) Economic feasibility of electricity production from energy plantations present on community-managed forest lands in Madhya Pradesh, India. Energy Policy 37:352–360

    Google Scholar 

  • El-Juhany LI, Aref IM, Megahed MM (2003) Properties of charcoal produced from some endemic and exotic acacia species grown in Riyadh, Saudi Arabia. J Adv Agric Res 8:695–704

    Google Scholar 

  • Erlach B, Harder B, Tsatsaronis G (2012) Combined hydrothermal carbonization and gasification of biomass with carbon capture. Energy 45:329–338

    CAS  Google Scholar 

  • Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98(4):737–746

    PubMed  CAS  Google Scholar 

  • Ferreira S, Gil N, Queiroz JA, Duarte AP, Domingues FC (2011) An evaluation of the potential of Acacia dealbata as raw material for bioethanol production. Bioresour Technol 102(7):4766–4773

    PubMed  CAS  Google Scholar 

  • Fox MH, Noike T, Ohki T (2003) Alkaline subcritical-water and alkaline heat treatment for the increase in biodegradability of newsprint. Water Sci Technol 48:77–84

    PubMed  CAS  Google Scholar 

  • Gabra M, Pettersson E, Backman R, Kjellstrom B (2001) Evaluation of cyclone gasifier performance for gasification of sugarcane residue – part 1: gasification of bagasse. Biomass Bioenerg 21:351–369

    CAS  Google Scholar 

  • García-Aparicio M, Parawira W, van Rensburg E, Diedericks D, Galbe M, Rosslander C, Zacchi G, Görgens JF (2011) Evaluation of steam-treated giant bamboo for production of fermentable sugars. Biotechnol Progr 27(3):641–649

    Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800

    PubMed  Google Scholar 

  • Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991

    PubMed  CAS  Google Scholar 

  • Gonzalez JF, Gonzalez-Garcıa CM, Ramiro A, Ganan J, Gonzalez J, Sabio E, Roman S, Turegano J (2005) Use of almond residues for domestic heating. Study of the combustion parameters in a mural boiler. Fuel Process Technol 86:1351–1368

    CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2008) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    PubMed  Google Scholar 

  • Hjorth M, Gränitz K, Adamsen APS, Møller HB (2011) Extrusion as a pretreatment to increase biogas production. Bioresour Technol 102(8):4989–4994

    PubMed  CAS  Google Scholar 

  • Hoekstra E, Van Swaaij WPM, Kersten SRA, Kees JA, Hogen-doorn KJA (2012) Fast pyrolysis in a novel wire-mesh reactor: decomposition of pine wood and model compounds. Chem Eng J 187:172–184

    CAS  Google Scholar 

  • Hooper RJ, Li J (1996) Summary of the factors critical to the commercial application of bioenergy technologies. Biomass Bioeng 11:469–474

    Google Scholar 

  • Huang F, Ragauskas AJ (2012) Dilute H2SO4 and SO2 pretreatments of loblolly pine wood residue for bioethanol production. Ind Biotechnol 8(1):22–30

    CAS  Google Scholar 

  • Huang R, Su R, Qi W, He Z (2011) Bioconversion of lignocellulose into bioethanol: process intensification and mechanism research. Bioenerg Res 4(4):225–245

    Google Scholar 

  • IEA ETSAP (2010) Technology Brief E05. www.etsap.org

  • Inoue H, Yano S, Endo T, Sakaki T, Sawayama S (2008) Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Biotechnol Biofuels 1:2

    PubMed  Google Scholar 

  • Jin C, Yao M, Liu H, Lee CFF, Ji J (2011) Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev 15(8):4080–4106

    CAS  Google Scholar 

  • Kaida R, Kaku T, Baba K, Oyadomari M, Watanabe T, Hartati S, Sudarmonowati E, Hayashi T (2009) Enzymatic saccharification and ethanol production of Acacia mangium and paraserianthes falcataria wood, and Elaeis guineensis trunk. J Wood Sci 55(5):381–386

    CAS  Google Scholar 

  • Karunanithy C, Muthukumarappan K, Gibbons WR (2012) Extrusion pretreatment of pine wood chips. Appl Biochem Biotechnol 167(1):81–99

    PubMed  CAS  Google Scholar 

  • Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G (2010) Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89:S20–S28

    CAS  Google Scholar 

  • Kersten SRA, Potic B, Prins W, Swaaij WPMV (2006) Gasification of model compounds and wood in hot compressed water. Ind Eng Chem Res 45:4169–4177

    CAS  Google Scholar 

  • Khodier A, Kilgallon P, Legrave N, Simms N, Oakey J, Bridgwater T (2009) Pilot-scale combustion of fast-pyrolysis bio-oil: ash deposition and gaseous emissions. Environ Prog Sustain Energy 28:397–403

    CAS  Google Scholar 

  • Kim KH, Eom IY, Lee SM, Cho ST, Choi IG, Choi JW (2010) Applicability of sub- and supercritical water hydrolysis of woody biomass to produce monomeric sugars for cellulosic bioethanol fermentation. J Ind Eng Chem 16(6):918–922

    CAS  Google Scholar 

  • Klass DL (1998) Thermal conversion: pyrolysis and liquefaction. In: Klass DL (ed) Biomass for renewable energy, fuels, and chemicals. Entech International, Inc., Barrington

    Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087

    PubMed  CAS  Google Scholar 

  • Klingler D, Vogel H (2010) Influence of process parameters on the hydrothermal decomposition and oxidation of glucose in sub- and supercritical water. J Supercrit Fluids 55:259–270

    CAS  Google Scholar 

  • Kratky L, Jirout T (2011) Biomass size reduction machines for enhancing biogas production. Chem Eng Technol 34(3):391–399

    CAS  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang YHP (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sustain Energy Rev 15(9):4950–4962

    CAS  Google Scholar 

  • Kumar R, Wyman CE (2009) Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol Prog 25:807–819

    PubMed  CAS  Google Scholar 

  • Kumar A, Cameron JB, Flynn PC (2003) Biomass power cost and optimum plant size in western Canada. Biomass Bioenerg 24:445–464

    Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    CAS  Google Scholar 

  • Kumar G, Panda AK, Singh RK (2010) Optimization of process for the production of bio-oil from eucalyptus wood. J Fuel Chem Technol 38:162–167

    CAS  Google Scholar 

  • Kumar M, Goyal Y, Sarkar A, Gayen K (2012) Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feestocks. Appl Energy 93:193–204

    CAS  Google Scholar 

  • La Grange DC, Den Haan R, Van Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87(4):1195–1208

    PubMed  CAS  Google Scholar 

  • Laser M, Jin H, Jayawardhana K, Lynd LR (2009) Coproduction of ethanol and power from switchgrass. Biofuels Bioprod Biorefin 3:195–218

    CAS  Google Scholar 

  • Li Y, Tschaplinski TJ, Engle NL, Hamilton CY, Rodríguez M, Liao JC, Schadt CW, Guss AM, Yang Y, Graham DE (2012) Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrassf. Biotechnol Biofuels 5:2. doi:10.1186/1754-6834-5-2

    PubMed  CAS  Google Scholar 

  • Lissens G, Verstraete W, Albrecht T, Brunner G, Creuly C, Seon J, Dussap G, Lasseur C (2004) Advanced anaerobic bioconversion of lignocellulosic waste for bioregenerative life support following thermal water treatment and biodegradationby Fibrobacter succinogenes. Biodegradation 15:173–184

    PubMed  CAS  Google Scholar 

  • Liu HW, Walter HK, Vogt GM, Vogt HS, Hobein BE (2002) Steam pressure disruption of municipal solid waste enhances anaerobic digestion kinetics and biogas yield. Biotechnol Bioeng 77:121–130

    PubMed  CAS  Google Scholar 

  • Liu CZ, Wang F, Stiles AR, Guo C (2012) Ionic liquids for biofuel production: opportunities and challenges. Appl Energy 92:406–414

    CAS  Google Scholar 

  • Madhavan A, Srivastava A, Kondo A, Bisaria VS (2012) Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crc Cr Rev Biotechnol 32(1):22–48

    CAS  Google Scholar 

  • Martínez JD, Mahkamov K, Andrade RV, Silva Lora EE (2012) Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renew Energy 38:1–9

    Google Scholar 

  • Matsushita Y, Yamauchi K, Takabe K, Awano T, Yoshinaga A, Kato M, Kobayashi T, Asada T, Furujyo A, Fukushima K (2010) Enzymatic saccharification of eucalyptus bark using hydrothermal pre-treatment with carbon dioxide. Bioresour Technol 101(13):4936–4939

    PubMed  CAS  Google Scholar 

  • McIntosh S, Vancov T, Palmer J, Spain M (2012) Ethanol production from eucalyptus plantation thinnings. Bioresour Technol 110:264–272

    PubMed  CAS  Google Scholar 

  • Meng J, Park J, Tilotta D, Park S (2012) The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil. Bioresour Technol 111:439–446

    PubMed  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust 38(4):522–550

    CAS  Google Scholar 

  • Miller S, Hester R (2007) Concentrated acid conversion of pine sawdust to sugars part II: high-temperature batch reactor kinetics of pretreated pine sawdust. Chem Eng Commun 194(1):103–116

    CAS  Google Scholar 

  • Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245

    PubMed  CAS  Google Scholar 

  • Moreno AD, Ibarra D, Fernández JL, Ballesteros M (2012) Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour Technol 106:101–109

    PubMed  CAS  Google Scholar 

  • Muñoz C, Mendonça R, Baeza J, Berlin A, Saddler J, Freer J (2011) Bioethanol production from bio-organosolv pulps of Pinus radiata and Acacia dealbata. J Chem Technol Biotechnol 82(8):767–774

    Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597

    CAS  Google Scholar 

  • Nakamura Y, Mtui G (2003) Anaerobic fermentation of woody biomass treated by various methods. Biotechnol Bioprocess E 8(3):179–182

    CAS  Google Scholar 

  • Ncibi MC (2010) Bioconversion of renewable bioresources and agricultural by-products into bioethanol. Recent Pat Chem Eng 3(3):165–179

    CAS  Google Scholar 

  • Oasmaa A, Solantausta Y, Arpiainen V, Kuoppala E, Sipila K (2010) Fast pyrolysis bio-oils from wood and agricultural residues. Energy Fuel 24:1380–1388

    CAS  Google Scholar 

  • Park N, Kim HY, Koo BW, Yeo H, Choi IG (2010) Organosolv pre-treatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresour Technol 101(18):7046–7053

    CAS  Google Scholar 

  • Peterson D, Haase S (2009) Market assessment of biomass gasification and combustion technology for small- and medium-scale applications. Technical report NREL. http://www.nrel.gov/docs/fy09osti/46190.pdf

  • Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ Jr, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65

    CAS  Google Scholar 

  • Pfeifer C, Koppatz S, Hofbauer H (2011) Steam gasification of various feedstocks at a dual fluidised bed gasifier: impacts of operation conditions and bed materials. Biomass Convers Biorefin 1:39–53

    CAS  Google Scholar 

  • Pimenta AS, Vital BR, Bayona JM, Alzaga R (1998) Characterisation of polycyclic aromatic hydrocarbons in liquid products from pyrolysis of eucalyptus grands by supercritical fluid extraction and GC-MS determination. Fuel 77:1133–1139

    CAS  Google Scholar 

  • Pindoria RV, Megaritis A, Messenbhk RC, Dugwell DR, Kandiyoti R (1998) Comparison of the pyrolysis and gasification of biomass: effect of reacting gas atmosphere and pressure on eucalyptus wood. Fuel 77:1247–1251

    CAS  Google Scholar 

  • Prins MJ, Ptasinski KJ, Janssen FJJG (2006) More efficient biomass gasification via torrefaction. Energy 31:3458–3470

    CAS  Google Scholar 

  • Prins M, van der Berg R, van Holthoon E, van Dorst E, Geuzebroek F (2012) Technological developments IGCC for carbon capture. Chem Eng Technol 35:413–419

    CAS  Google Scholar 

  • Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101(24):9624–9630

    PubMed  CAS  Google Scholar 

  • Rodríguez GM, Atsumi S (2012) Synthetic biology approaches to produce C3–C6 alcohols from microorganisms. Curr Chem Biology 6(1):32–41

    Google Scholar 

  • Romaní A, Garrote G, Alonso JL, Parajó JC (2010) Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresour Technol 101(22):8706–8712

    PubMed  Google Scholar 

  • Romaní A, Garrote G, López F, Parajó JC (2011) Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresour Technol 102(10):5896–5904

    PubMed  Google Scholar 

  • Romaní A, Garrote G, Parajó JC (2012) Bioethanol production from autohydrolyzed Eucalyptus globulus by simultaneous saccharification and fermentation operating at high solids loading. Fuel 94:305–312

    Google Scholar 

  • Roy C (2000) Vacuum pyrolysis breakthrough. PyNe Issue 10. http://www.pyne.co.uk/Resources/user/PyNews%2010.pdf

  • Rudolf A, Alkasrawi M, Zacchi G, Lidén G (2005) A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb Technol 37:195–204

    CAS  Google Scholar 

  • Rutberg PG, Bratsev AN, Kuznetsov VA, Popov VE, Ufimtsev AA, Shtengel SV (2011) On efficiency of plasma gasification of wood residues. Biomass Bioenerg 35:495–504

    CAS  Google Scholar 

  • Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    PubMed  Google Scholar 

  • Sanders WTM, Geerink M, Zeeman G, Letting G (2000) Anaerobic hydrolysis kinetics of particulate substrates. Water Sci Technol 41:17–24

    PubMed  CAS  Google Scholar 

  • Seabra JEA, Tao L, Chuma HL, Macedo IC (2010) A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering. Biomass Bioenerg 34:1065–1078

    CAS  Google Scholar 

  • Sensoz S, Can M (2002) Pyrolysis of pine (Pinus brutia ten.) chips: 1. Effect of pyrolysis temperature and heating rate on the product yields. Energy Sour 24:347–355

    CAS  Google Scholar 

  • Siedlecki M, de Jong W, Verkooijen AHM (2011) Fluidized bed gasification as a mature and reliable technology for the production of bio-syngas and applied in the production of liquid transportation fuels-a review. Energies 4:389–434

    CAS  Google Scholar 

  • Silva NLC, Betancur GJV, Vasquez MP, De Barros GE, Pereira N Jr (2011) Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process. Appl Biochem Biotechnol 163(7):928–936

    PubMed  CAS  Google Scholar 

  • Stephen JD, Mabee WE, Saddler JN (2010) Biomass logistics as a determinant of second-generation biofuel facility scale, location and technology selection. Biofuels Bioprod Biorefin 4:503–518

    CAS  Google Scholar 

  • Stephen JD, Mabee WE, Saddler JN (2012) Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels Bioprod Biorefin 6:159–176

    CAS  Google Scholar 

  • Suarez AC, Tancredi N, Pinheiro PCC, Yoshida MI (2010) Thermal analysis of the combustion of charcoals from Eucalyptus dunnii obtained at different pyrolysis temperatures. J Therm Anal Calorim 100:1051–1054

    Google Scholar 

  • Sugano M, Takagi H, Hirano K, Mashimo K (2008) Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry. J Mater Sci 43:2476–2486

    CAS  Google Scholar 

  • Sun Q, Yu S, Wang F, Wang J (2011) Decomposition and gasification of pyrolysis volatiles from pine wood through bed of hot char. Fuel 90:1041–1048

    CAS  Google Scholar 

  • Swain PK, Das LM, Naik SN (2011) Biomass to liquid: a prospective challenge to research and development in 21st century. Renew Sustain Energy Rev 15:4917–4933

    CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2:707–738

    CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    PubMed  CAS  Google Scholar 

  • Tian S, Luo XL, Yang XS, Zhu JY (2010) Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification. Bioresour Technol 101(22):8678–8685

    PubMed  CAS  Google Scholar 

  • Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM (2002) Exploration of the possibilities for production of Fischer-Tropsch liquids and power via biomass gasification. Biomass Bioenerg 23:129–152

    CAS  Google Scholar 

  • Titirici MM, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31:787–789

    CAS  Google Scholar 

  • Tomeczek J, Stanisław G (2003) Volatiles release and porosity evolution during high pressure coal pyrolysis. Fuel 82:285–292

    CAS  Google Scholar 

  • Torr KM, Love KT, Etinkol OP, Donaldson LA, George A, Holmes BM, Simmons BA (2012) The impact of ionic liquid pretreatment on the chemistry and enzymatic digestibility of Pinus radiata compression wood. Green Chem 14(3):778–787

    CAS  Google Scholar 

  • Tu M, Saddler JN (2010) Potential enzyme cost reduction with the addition ofs during the hydrolysis of pretreated softwood. Appl Biochem Biotechnol 161(1–8):274–287

    PubMed  CAS  Google Scholar 

  • Uras Ü, Carrier M, Hardie AG, Knoetze JH (2012) Physico-chemical characterization of biochars from vacuum pyrolysis of South African agricultural wastes for application as soil amendments. J Anal Appl Pyrolysis 98:207–213

    CAS  Google Scholar 

  • Uslu A (2005) Pre-treatment technologies, and their effects on the international bioenergy supply chain logistics: techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Dissertation, Utrecht University, Utrecht

    Google Scholar 

  • Uslu A, Faaij APC, Bergman PCA (2008) Pre-treatment technologies, and their effects on the international bioenergy supply chain logistics: techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy 33:1206–1223

    Google Scholar 

  • van der Drift A, Boerrigter H, Coda B, Cieplik MK, Hemmes K (2004) Entrained flow gasification of biomass: ash behaviour, feeding issues, and system analyses. Report ECN-C--04-039. http://www.ecn.nl/docs/library/report/2004/c04039.pdf

  • Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg 35:3748–3762

    Google Scholar 

  • Van Rensburg E, Den Haan R, Smith J, Van Zyl WH, Gorgens JF (2012) The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture. Appl Microbiol Biotechnol 96(1):197–209

    PubMed  CAS  Google Scholar 

  • Van Zyl WH, Chimphango AFA, den Haan R, Görgens JF, Chirwa PWC (2011) Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa. Interface Focus 1:196–211

    PubMed  Google Scholar 

  • Vidal BC Jr, Dien BS, Ting KC, Singh V Jr (2011) Influence of feedstock particle size on lignocellulose conversion – a review. Appl Biochem Biotechnol 164(8):1405–1421

    PubMed  CAS  Google Scholar 

  • Wagenaar BM, Prins W, van Swaaij WPM (1993) Flash pyrolysis kinetics of pine wood. Fuel Process Technol 36:291–298

    CAS  Google Scholar 

  • Walker ME, Abbasian J, Chmielewski DJ, Castaldi MJ (2011) Dry gasification oxy-combustion power cycle. Energy Fuel 25:2258–2266

    CAS  Google Scholar 

  • Wang GS, Pan XJ, Zhu JY, Gleisner R, Rockwood D (2009) Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods. Biotechnol Prog 25(4):1086–1093

    PubMed  CAS  Google Scholar 

  • Wang Y, Radosevich M, Hayes D, Labbé N (2011) Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass. Biotechnol Bioeng 108(5):1042–1048

    PubMed  CAS  Google Scholar 

  • Wang W, Yuan T, Wang K, Cui B, Dai Y (2012) Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populus tomentosa. Bioresour Technol 107:282–286

    PubMed  CAS  Google Scholar 

  • Wei W, Wu S, Liu L (2012) Enzymatic saccharification of dilute acid pretreated eucalyptus chips for fermentable sugar production. Bioresour Technol 110:302–307

    PubMed  CAS  Google Scholar 

  • Wright MM, Satrio JA, Brown RC, Daugaard DE, Hsu DD (2010) Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Technical report NREL/TP-6A20-46586. http://www.nrel.gov/docs/fy11osti/46586.pdf

  • Yáñez R, Romaní A, Garrote G, Alonso JL, Parajó JC (2009) Experimental evaluation of alkaline treatment as a method for enhancing the enzymatic digestibility of autohydrolysed Acacia dealbata. J Chem Technol Biotechnol 84(7):1070–1077

    Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Biorefin 2(1):26–40

    CAS  Google Scholar 

  • Yu Q, Zhuang X, Yuan Z, Wang Q, Qi W, Wang W, Zhang Y, Xu J, Xu H (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 101(13):4895–4899

    PubMed  CAS  Google Scholar 

  • Zhang H, Pang H, Shi J, Fu T, Liao B (2012) Investigation of liquefied wood residues based on cellulose, hemicellulose, and lignin. J Appl Polymer Sci 123:850–856

    CAS  Google Scholar 

  • Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100(8):2411–2418

    PubMed  CAS  Google Scholar 

  • Zhu W, Zhu JY, Gleisner R, Pan XJ (2010) On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine. Bioresour Technol 101(8):2782–2792

    PubMed  CAS  Google Scholar 

  • Zinoviev S, Muller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3:1106–1133

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Görgens, J.F., Carrier, M., García-Aparicio, M.P. (2014). Biomass Conversion to Bioenergy Products. In: Seifert, T. (eds) Bioenergy from Wood. Managing Forest Ecosystems, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7448-3_7

Download citation

Publish with us

Policies and ethics