Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1712 Accesses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 21))

Abstract

Innate immunity is the first line of defense against invading microorganisms in plants. Pathogen-associated molecular patterns (PAMPs) are the classical activators of immune responses. These are alarm signal molecules are perceived as ‘nonself’ by plant pattern recognition receptors (PRRs) to switch on the plant immune responses. PAMPs are not only detected in pathogens, but also detected in nonpathogens and even in saprophytes. The PAMPs are often called as microbe-associated molecular patterns (MAMPs). MAMPs are molecular signatures typical of whole classes of microbes and their recognition by PRRs activates the plant innate immunity. Most of the PRRs are receptor-like kinases (RLKs) and RLKs are proteins with a “receptor” and a “signaling domain” in one molecule. The extracellular domains of RLKs bind directly to legands to perceive extracellular signals, whereas the cytoplasmic kinase domains transduce these signals into the cell. PRRs interact with additional transmembrane proteins which act as “signaling amplifiers”. PAMPs induce autophosphorylation of the kinase domain of PRRs and the autophosphorylated PRRs are translocated to endosomes. The biogenesis of trans-membrane PRRs occurs through endoplasmic reticulum (ER) with the aid of ER-resident chaperones. The PRR in ER is transported from ER to plasma membrane and N-glycosylation of PRRs is required for the transport of PRRs. Second messengers deliver the information generated by the PAMP/PRR signaling complex to the proteins which decode/interpret signals to initiate defense gene expression. Calcium ion is a ubiquitous intracellular second messenger involved in various defense signaling pathways. Ca2+ is a master regulator of gene expression in plants. Calcium signatures are recognized by calcium sensors to transduce calcium-mediated signals into downstream events. Guanosine triphosphate (GTP)-binding proteins (G-proteins) act as molecular switches in signal transduction system. Mitogen-activated protein kinase (MAPK) cascades transduce extracellular stimuli into intracellular responses in plants. Reactive oxygen species is a second messenger in transmitting the PAMP signal. Nitric oxide (NO) is a diffusible second messenger acting in cellular signal transduction through stimulus-coupled S-nitrosylation of cysteine residues. The plant hormones salicylic acid, jasmonate, ethylene, abscisic acid, auxin, cytokinin, gibberellins, and brassinosteroids play important role in immune response signaling. Plant hormones activate different signaling pathways inducing distinctly different defense genes. These signaling pathways can crosstalk with each other and this crosstalk helps the plant to “decide” which defensive strategy to follow, depending on the type of attacker it is encountering. Potential pathogens produce several effectors to nullify the defense responses induced by the innate immune system. Pathogens may also hijack some signaling systems to cause disease. The war between the plant and pathogen appears to be in fine-tuning the signaling systems to cause disease or to enhance host defense response. Recent advances in our understanding of the molecular basis of plant innate immunity have opened new era in developing potential tools in management of crop diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul Kadar M, Lindsberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238

    Google Scholar 

  • Aker J, de Vries SC (2008) Plasma membrane receptor complexes. Plant Physiol 147:1560–1564

    PubMed  CAS  Google Scholar 

  • Akimoto-Tomiyama C, Furutani A, Tsuge S, Washington EJ, Nishizawa Y, Minami E, Ochiai H (2012) XopR, a type III effector secreted by Xanthomonas oryzae pv. oryzae, suppresses microbe-associated molecular pattern-triggered immunity in Arabidopsis thaliana. Mol Plant Microbe Interact 25:505–514

    PubMed  CAS  Google Scholar 

  • Ali GS, Prasad KVSK, Day I, Reddy ASN (2007) Ligand-dependent reduction in the membrane mobility of FLAGELLIN SENSITIVE2, an Arabidopsis receptor-like kinase. Plant Cell Physiol 48:1601–1611

    PubMed  CAS  Google Scholar 

  • Alkan N, Fluhr R, Prusky D (2012) Ammonium secretion during Colletotrichum coccodes infection modulates salicylic and jasmonic acid pathways of ripe and unripe tomato fruit. Mol Plant Microbe Interact 25:85–96

    PubMed  CAS  Google Scholar 

  • Allan AG, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559–1572

    PubMed  CAS  Google Scholar 

  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–2342

    PubMed  CAS  Google Scholar 

  • Altenbach DD, Robatzek S (2007) Pattern recognition receptors: from the cell surface to intracellular dynamics. Mol Plant Microbe Interact 20:1031–1039

    PubMed  CAS  Google Scholar 

  • Arnott T, Murphy TM (1991) A comparison of the effects of a fungal elicitor and ultraviolet radiation on ion transport and hydrogen peroxide synthesis by rose cells. Environ Exp Bot 31:209–216

    Google Scholar 

  • Aslam SN, Newman MA, Erbs G, Morissey KL, Chinchilla D, Boller T, Jensen TT, De Castro C, Iearno T, Molinaro A, Jackson RW, Knight MR, Cooper RM (2008) Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr Biol 18:1078–1083

    PubMed  CAS  Google Scholar 

  • Aslam SN, Erbs G, Morrissey KL, Newman M-A, Chinchilla D, Boller T, Molinaro A, Jackson RW, Cooper RM (2009) Microbe-associated molecular pattern (MAMP) signatures, synergy, size, and charge: influences on perception or mobility and host defense responses. Mol Plant Pathol 10:375–387

    PubMed  CAS  Google Scholar 

  • Atsumi G, Kagaya U, Kitazawa H, Nakahara KS, Uyeda I (2009) Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars. Mol Plant Microbe Interact 22:166–175

    PubMed  CAS  Google Scholar 

  • Aziz A, Poinssot B, Daire X, Adrian M, Bezier A, Lambert B, Joubert JM, Pugin A (2003) Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe Interact 16:1118–1128

    PubMed  CAS  Google Scholar 

  • Bae H, Kim MS, Sicher RC, Bae H-J, Bailey BA (2006) Necrosis- and ethylene-inducing peptide from Fusarium oxysporum induces a complex cascade of transcripts associated with signal transduction and cell death in Arabidopsis. Plant Physiol 141:1056–1067

    PubMed  CAS  Google Scholar 

  • Bar M, Sharfman M, Schuster S, Avni A (2009) The coiled-coil domain of EHD2 mediates inhibition of LeEix2 endocytosis and signaling. PLoS One 4:e7963

    Google Scholar 

  • Bellin D, Asai S, Delledonne M, Yoshioka H (2013) Nitric oxide as a mediator for defense responses. Mol Plant Microbe Interact 26:271–277

    PubMed  CAS  Google Scholar 

  • Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054

    PubMed  CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A (2004) Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact 17:763–770

    PubMed  CAS  Google Scholar 

  • Bertoni G (2012) Oxylipins and plant palability. Plant Cell 24:1305

    CAS  Google Scholar 

  • Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Pugin A, Wendehenne D (2008) Nitric oxide in plants: production and cross-talk with Ca2+ signaling. Mol Plant 1:218–228

    PubMed  CAS  Google Scholar 

  • Bi D, Cheng YT, Li X, Zhang Y (2010) Activation of plant immune responses by a gain-of-function mutation in an atypical receptor-like kinase. Plant Physiol 153:1771–1779

    PubMed  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    PubMed  CAS  Google Scholar 

  • Bolwell GP, Butt VS, Davies DR, Zimmerlin A (1995) The origin of the oxidative burst in plants. Free Radic Res 23:517–532

    PubMed  CAS  Google Scholar 

  • Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J (2010) Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–422

    PubMed  CAS  Google Scholar 

  • Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C (2010) Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc Natl Acad Sci USA 107:14502–14507

    PubMed  CAS  Google Scholar 

  • Brunner F, Rosahl S, Lee J, Rudd JJ, Geller C, Kauppinen S, Rasmussen G, Scheel D, Nürnberger T (2002) Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J 21:6681–6688

    PubMed  CAS  Google Scholar 

  • Cavalcanti FR, Resende MLV, Lima J, Silveira JAG, Oliveira TA (2006) Activities of antioxidant enzymes and photosynthetic responses in tomato pre-treated by plant activators and inoculated by Xanthomonas vesicatoria. Physiol Mol Plant Pathol 68:198–208

    CAS  Google Scholar 

  • Cheng B, Yu X, Ma Z, Dong S, Dou D, Wang Y, Zheng X (2012) Phytophthora sojae effector Avh331 suppresses the plant defence response by disturbing the MAPK signalling pathway. Physiol Mol Plant Pathol 77:1–9

    CAS  Google Scholar 

  • Cheung M-Y, Zeng N-Y, Tong S-W, Li FW-Y, Zhao K-J, Zhang Q, Sun SS-M, Lam H-M (2007) Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. J Exp Bot 58:4147–4159

    PubMed  CAS  Google Scholar 

  • Choi J, Choi D, Lee R, Ryu CM, Hwang I (2011) Cytokinins and plant immunity: old foes or new friends. Trends Plant Sci 16:388–394

    PubMed  CAS  Google Scholar 

  • Cloud-Hansen KA, Brook Petersen S, Stabb EV, Goldman WE, McFall-Ngai MJ, Handelsman J (2006) Breaching the great wall: peptidoglycan and microbial interactions. Nat Rev Microbiol 4:710–716

    PubMed  CAS  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    PubMed  CAS  Google Scholar 

  • D’Ovidio R, Mattei B, Roberti S, Bellincampi D (2004) Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. Biochim Biophys Acta Proteins Proteomics 1696:237–244

    Google Scholar 

  • de Freitas MB, Stadnik MJ (2012) Race-specific and ulvan-induced defense responses in bean (Phaseolus vulgaris) against Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 78:8–13

    Google Scholar 

  • de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez Egea P, Bogre L, Grant M (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J 26:1434–1443

    PubMed  Google Scholar 

  • De Vleeschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi I-R, Vera-Cruz C, Kikuchi S, Höfte M (2012) Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiol 158:1833–1846

    Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937

    PubMed  Google Scholar 

  • De Vos M, Van Zaanen W, Koornneef A, Korzelius JP, Dicke M, Van Loon LC, Pieterse CMJ (2006) Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol 142:352–363

    PubMed  Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40

    CAS  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156. doi:10.1199/tab.0156

    PubMed  Google Scholar 

  • Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445

    PubMed  CAS  Google Scholar 

  • Ding S-W (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    PubMed  CAS  Google Scholar 

  • Ding S-W, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    PubMed  CAS  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    PubMed  CAS  Google Scholar 

  • El Rahman TA, El Oirdi M, Gonzalez-Lamothe R, Bouarab K (2012) Necrotrophic pathogens use salicylic acid signaling pathway to promote disease development in tomato. Mol Plant Microbe Interact 25:1584–1593

    PubMed  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    PubMed  CAS  Google Scholar 

  • Foissner L, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    PubMed  CAS  Google Scholar 

  • Fu J, Wang S (2011) Insights into auxin signaling in plant-pathogen interactions. Front Plant Sci 2:74. doi:10.3389/fpls.2011.0074, Article 2:pp7

    PubMed  Google Scholar 

  • Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scrase-Field S, Boyce JM, Bouché N, Knight MR, Fromm H (2010) Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta 232:165–178

    PubMed  CAS  Google Scholar 

  • Geldner N, Robatzek S (2008) Plant receptors go endosomal: a moving view on signal transduction. Plant Physiol 147:1565–1574

    PubMed  CAS  Google Scholar 

  • Göhre V, Spallek T, Häweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzek S (2008) Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 18:1824–1832

    PubMed  Google Scholar 

  • Grennan AK (2007) Protein S-nitrosylation: protein targets and roles in signal transduction. Plant Physiol 144:1237–1239

    PubMed  CAS  Google Scholar 

  • Großkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, Zeier J, Novák O, Strnad M, Pfeifhofer H, Graaff EVD, Simon U, Roitsch T (2011) Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol 157:815–830

    PubMed  Google Scholar 

  • Gu Y, Wang Z, Yang Z (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol 7:527–536

    PubMed  CAS  Google Scholar 

  • Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G, Nurnberger T (2007) Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 282:32338–32348

    PubMed  CAS  Google Scholar 

  • Gust AA, Brunner F, Nürnberger T (2010) Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 21:204–210

    PubMed  CAS  Google Scholar 

  • Halliwell B (1978) Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates. Is it a mechanism for hydroxyl radical production in biochemical systems? FEBS Lett 92:321–326

    PubMed  CAS  Google Scholar 

  • Hamada H, Kurusu T, Okuma E, Nokajima H, Kiyoduka M, Koyano T, Sugiyama Y, Okada K, Koga J, Saji H, Miyao A, Hirochika H, Yamane H, Murata Y, Kuchitsu K (2012) Regulation of a proteinaceous elicitor-induced Ca2+ influx and production of phytoalexins by a putative voltage-gated cation channel, OsTPC1, in cultured rice cells. J Biol Chem 287:9931–9939

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Eckert C, Anschūtz U, Scholz M, Held K, Waadt R, Reyer A, Hippler M, Becker D, Kudla J (2012) Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins. J Biol Chem 287:7956–7968

    PubMed  CAS  Google Scholar 

  • Häweker H, Rips S, Koiwa H, Salomon S, Saijo Y, Chinchilla D, Robatzek S, von Schaewen A (2010) Pattern recognition receptors require N-glycosylation to mediate plant immunity. J Biol Chem 285:4629–4636

    PubMed  Google Scholar 

  • He P, Shan L, Sheen J (2007) Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cell Microbiol 9:1385–1396

    PubMed  CAS  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J (2012) Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiol 158:759–776

    PubMed  CAS  Google Scholar 

  • Hirt H (2000) Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 97:2405–2407

    PubMed  CAS  Google Scholar 

  • Huffaker A, Dafoe NJ, Schmelz EA (2011) ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol 155:1325–1338

    PubMed  CAS  Google Scholar 

  • Hwang IS, Hwang BK (2010) The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol 152:948–967

    PubMed  CAS  Google Scholar 

  • Hwang IS, Hwang BK (2011) The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol 155:447–463

    PubMed  CAS  Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    CAS  Google Scholar 

  • Iriti M, Faoro F (2009) Chitosan as a MAMP, searching for a PRR. Plant Signal Behav 4:66–68

    PubMed  CAS  Google Scholar 

  • Jeworutzki E, Roelfsema MR, Anschütz U, Krol E, Elzenga JT, Felix G, Boller T, Hedrich R, Becker D (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant J 62:367–378

    PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91

    PubMed  Google Scholar 

  • Kanzaki H, Saitoh H, Takahashi Y, Berberich T, Ito A, Kamoun S, Terauchi R (2008) NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228:977–987

    PubMed  CAS  Google Scholar 

  • Khatib M, Lafitte C, Esquerré-Tugayé M-T, Bottin A, Rickauer M (2004) The CBEL elicitor of Phytophthora parasitica var. nicotianae activates defence in Arabidopsis thaliana via three different signalling pathways. New Phytol 162:501–510

    CAS  Google Scholar 

  • Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F (2012) Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiol 159:501–516

    PubMed  CAS  Google Scholar 

  • Kim Y-T, Oh J, Kim K-H, Uhm J-Y, Lee B-M (2010) Isolation and characterization of NgRLK1, a receptor-like kinase of Nicotiana glutinosa that interacts with the elicitin of Phytophthora capsici. Mol Biol Rep 37:717–727

    PubMed  CAS  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signalling in plant defense. Proc Natl Acad Sci USA 97:8849–8855

    PubMed  CAS  Google Scholar 

  • Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmüller R, Cai D (2010) Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol Plant Microbe Interact 23:446–457

    PubMed  CAS  Google Scholar 

  • Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol 128:1046–1056

    PubMed  CAS  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    PubMed  CAS  Google Scholar 

  • Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BPHJ, Stakawicz B, Jones JDG, Zipfel C (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369

    PubMed  CAS  Google Scholar 

  • Laluk K, Luo H, Chai M, Dhawan R, Lai Z, Mengiste T (2011) Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell 23:2831–2849

    PubMed  CAS  Google Scholar 

  • Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    PubMed  CAS  Google Scholar 

  • Lehtonen NT, Akita M, Frank W, Reski R, Valkonen JPT (2012) Involvement of a class III peroxidase and the mitochondrial protein TSPO in oxidative burst upon treatment of moss plants with a fungal elicitor. Mol Plant Microbe Interact 25:363–371

    PubMed  CAS  Google Scholar 

  • Lewsey MG, Murphy AM, MacLean D, Dalchau N, Westwood JH, Macaulay K, Bennett M, Moulin M, Hanke DE, Powell G, Smith AG, Carr JP (2010) Disruption of two signaling pathways by a viral RNA silencing suppressor. Mol Plant Microbe Interact 23:835–845

    PubMed  CAS  Google Scholar 

  • Li YM, Zhang ZK, Jia YT, Shen YM, He HM, Fang RX, Chen XY, Hao XJ (2008) 3-acetonyl-3-hydroxy-oxindole: a new inducer of systemic acquired resistance in plants. Plant Biotechnol J 6:301–308

    PubMed  CAS  Google Scholar 

  • Li G, Meng X, Wang R, Mao G, Han L, Liu Y, Zhang S (2012) Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet 8(6):e1002767. doi:10.1371/journal.pgen.1002767

    PubMed  CAS  Google Scholar 

  • Liu P-P, von Dahl CC, Klessig DF (2011a) The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant Physiol 157:2216–2226

    PubMed  CAS  Google Scholar 

  • Liu P-P, von Dahl CC, Park S-W, Klessig DF (2011b) Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol 155:1762–1768

    PubMed  CAS  Google Scholar 

  • Lohmann GV, Shimoda Y, Nielsen W, Jørgensen FG, Grossmann C, Sandal N, Sørensen K, Thirup S, Madsen LH, Tabata S, Sato S, Stougaard J, Radutoiu S (2010) Evolution and regulation of the Lotus japonica LysM receptor gene family. Mol Plant Microbe Interact 23:510–521

    PubMed  CAS  Google Scholar 

  • Luan S (2009) The CBL-CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42

    PubMed  CAS  Google Scholar 

  • Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2011) Next generation systemic acquired resistance. Plant Physiol 158:844–853

    PubMed  Google Scholar 

  • Mackey D, McFall AJ (2006) MAMPs and MIMPs: proposed classification for inducers of innate immunity. Mol Microbiol 61:1365–1371

    PubMed  CAS  Google Scholar 

  • Makandar R, Nalam V, Chaturvedi R, Jeannotte R, Sparks AA, Shah J (2010) Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum. Mol Plant Microbe Interact 23:861–870

    PubMed  CAS  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    PubMed  CAS  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible W-R, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959

    PubMed  CAS  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    PubMed  CAS  Google Scholar 

  • Mersmann S, Bourdais G, Rietz S, Robatzek S (2010) Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol 154:391–400

    PubMed  CAS  Google Scholar 

  • Mészáros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardόczy V, Teige M, Koncz C, Peck S, Bögre L (2006) The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant J 48:485–495

    PubMed  Google Scholar 

  • Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H, Hirose S, Ohkawa Y, Ohashi Y (2008) Characteristic expression of twelve PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds. Mol Genet Genomics 279:415–427

    PubMed  CAS  Google Scholar 

  • Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C (2010) Ascorbic acid deficiency in Arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Mol Plant Microbe Interact 23:340–351

    PubMed  CAS  Google Scholar 

  • Naito K, Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi TT, Ichinose Y (2008) Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence. Mol Plant Microbe Interact 21:1165–1174

    PubMed  CAS  Google Scholar 

  • Nambeesan S, AbuQamar S, Laluk K, Mattoo AK, Mickelhart MV, Ferruzzi MG, Mengiste T, Handa AK (2012) Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol 158:1034–1045

    PubMed  CAS  Google Scholar 

  • Newman M-A, Dow JM, Molinaro A, Parrilli M (2007) Priming, induction and modulation of plant defense responses by bacterial lipopolysaccharides. Plant Immun 13:69–84

    CAS  Google Scholar 

  • Nicaise V, Roux M, Zipfel C (2009) Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol 150:1638–1647

    PubMed  CAS  Google Scholar 

  • Nie X (2006) Salicylic acid suppresses Potato virus Y isolate N:O-induced symptoms in tobacco plants. Phytopathology 96:255–263

    PubMed  CAS  Google Scholar 

  • Nie H, Wu Y, Yao C, Tang D (2011) Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis. J Genet Genomics 38:137–148

    PubMed  CAS  Google Scholar 

  • Nürnberger T, Brunner F (2002) Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol 5:318–324

    PubMed  Google Scholar 

  • Nürnberger T, Kǖfner I (2011) The role of the plant plasma membrane in microbial sensing and innate immunity: the plant plasma membrane. Plant Cell Monogr 19:471–483

    Google Scholar 

  • Nürnberger T, Lipka V (2005) Non-host resistance in plants – new insights into an old phenomenon. Mol Plant Pathol 6:335–345

    PubMed  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    PubMed  Google Scholar 

  • Oostendorp M, Kunz W, Dietrich B, Staub T (2001) Induced disease resistance in plants by chemicals. Eur J Plant Pathol 107:19–28

    CAS  Google Scholar 

  • Ori N, Eshed Y, Paran I, Presting G, Aviv D, Tanksley S, Zamir D, Fluhr R (1997) The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat super family of plant resistance genes. Plant Cell 9:521–532

    PubMed  CAS  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2012) Primed plants do not forget. Environ Exp Bot 94:46–56

    Google Scholar 

  • Petutschnig EK, Jones AME, Serazetdinova L, Lipka U, Lipka V (2010) The lysin motif receptor-like kinase (LysM-RLK) is a major chitin binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285:28902–28911

    PubMed  CAS  Google Scholar 

  • Popescu SC (2012) A model for the biosynthesis and transport of plasma membrane-associated signaling receptors to the cell surface. Front Plant Sci 3:7

    Google Scholar 

  • Qin X, Liu JH, Zhao WS, Chen XJ, Guo ZJ, Peng YL (2013) Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol Plant Microbe Interact 26:227–239

    PubMed  CAS  Google Scholar 

  • Qu F, Morris TJ (2005) Suppressors of RNA silencing encoded by plant viruses and their role in viral infection. FEBS Lett 579:5958–5964

    PubMed  CAS  Google Scholar 

  • Qutob D, Kemmerling B, Brunner F, Küfner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T, Glawischnig E, Schween G, Lacombe B, Watanabe N, Lam E, Schlichting R, Scheel D, Nau K, Dodt G, Hubert D, Gijzen M, Nürnberger T (2006) Phytotoxicity and innate immune responses induced by NEP1-like proteins. Plant Cell 18:3721–3744

    PubMed  CAS  Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    PubMed  CAS  Google Scholar 

  • Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537–542

    PubMed  CAS  Google Scholar 

  • Saijo Y (2010) ER quality control of immune receptors and regulators in plants. Cell Microbiol 12:716–724

    PubMed  CAS  Google Scholar 

  • Schulze B, Mentzel T, Jehle A, Mueller K, Beeler S, Boller T, Felix G, Chinchilla D (2010) Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem 285:9444–9451

    PubMed  CAS  Google Scholar 

  • Segonzac C, Zipfel C (2011) Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol 14:54–61

    PubMed  CAS  Google Scholar 

  • Seifert GJ, Blaukopf C (2010) Irritable walls: the plant extracellular matrix and signaling. Plant Physiol 153:467–478

    PubMed  CAS  Google Scholar 

  • Shao M, Wang J, Dean RA, Lin Y, Gao X, Hu S (2008) Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnol J 6:73–81

    PubMed  CAS  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu EF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    PubMed  CAS  Google Scholar 

  • Shinya T, Galis I, Narisawa T, Sasaki M, Fukuda H, Matsuoka H, Saito M, Matsuoka K (2007) Comprehensive analysis of glucan elicitor-regulated expression in tobacco BY-2 cells reveals a novel MYB transcription factor involved in the regulation of phenylpropanoid metabolism. Plant Cell Physiol 48:1404–1413

    PubMed  CAS  Google Scholar 

  • Shinya T, Osada T, Desaki Y, Hatamoto M, Yamanaka Y, Hirano H, Takai R, Che F-S, Kaku H, Shibuya N (2010) Characterization of receptor proteins using affinity cross-linking with biotinylated ligands. Plant Cell Physiol 51:262–270

    PubMed  CAS  Google Scholar 

  • Silipo A, Sturiale L, Garozzo D, Erbs G, Tandrup Poulsen T, Lanzetta R, Dow JM, Parrilli M, Newman M-A, Molinaro A (2008) The acylation and phosphorylation pattern of lipid A from Xanthomonas campestris strongly influence its ability to trigger the innate immune response in Arabidopsis. Chembiochem 9:896–904

    PubMed  CAS  Google Scholar 

  • Silipo A, Erbs G, Shinya T, Dow JM, Parrilli MT, Lanzetta Shibuya N, Newman M-A, Molinaro A (2010) Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology 20:406–419

    PubMed  CAS  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    PubMed  CAS  Google Scholar 

  • Soulie MC, Perino C, Piffeteau A, Choquer M, Malfatti P, Cimerman A, Kunz O, Boccara M, Vidal-Cros A (2006) Botrytis cinerea virulence is drastically reduced after disruption of chitin synthesis class III gene (Bcchs3a). Cell Microbiol 8:1310–1321

    PubMed  CAS  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA 104:18842–18847

    PubMed  CAS  Google Scholar 

  • Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M (2012) Plant organellar calcium signaling: an emerging field. J Exp Bot 63:1525–1542

    PubMed  CAS  Google Scholar 

  • Taguchi F, Yamamoto M, Ohnishi-Kameyama M, Iwaki M, Yoshida M, Ishii T, Ichinose Y (2010) Defects in flagellin glycosylation affect the virulence of Pseudomonas syringae pv. tabaci 6605. Microbiology 156(Pt 1):72–80

    PubMed  CAS  Google Scholar 

  • Takakura Y, Ishida Y, Inoue Y, Tsutsumi F, Kuwata S (2004) Induction of a hypersensitive response-like reaction by powdery mildew in transgenic tobacco expressing harpinPss. Physiol Mol Plant Pathol 64:83–89

    CAS  Google Scholar 

  • Tellström V, Usadel B, Thimm O, Stitt M, Küster H, Niehaus K (2007) The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiol 143:825–837

    PubMed  Google Scholar 

  • Thaler JS, Bostock RM (2004) Interactions between abscisic acid-mediated responses and plant resistance to pathogens and insects. Ecology 85:48–58

    Google Scholar 

  • Thatcher LF, Manners JM, Kazan K (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J 58:927–939

    PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    PubMed  CAS  Google Scholar 

  • Thomma B, Penninckx I, Broekaert WF, Cammue BPA (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    PubMed  CAS  Google Scholar 

  • Tischner R, Koltermann M, Haesse H, Plath M (2010) Early responses of Arabidopsis thaliana to infection by Verticillium longisporum. Physiol Mol Plant Pathol 74:419–427

    CAS  Google Scholar 

  • Tsuda K, Katagiri P (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13:459–465

    PubMed  CAS  Google Scholar 

  • van Verk MC, Pappaaioannou D, Neeleman L, Bol JF, Linthorst HJM (2008) A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 140:1983–1995

    Google Scholar 

  • Vidhyasekaran P (2007) Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms, IIth edn. CRC Press/Taylor & Francis Group, Boca Raton, p 510

    Google Scholar 

  • Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defense responses. Mol Plant Pathol 8:737–746

    PubMed  CAS  Google Scholar 

  • Wan J, Zhang X-C, Neece D, Ramonell KM, Clough S, Kim S-Y, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    PubMed  CAS  Google Scholar 

  • Wang Z, Mao H, Dong C, Ji R, Cai L, Fu H, Liu S (2009) Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Mol Plant Microbe Interact 22:235–244

    PubMed  CAS  Google Scholar 

  • Wang Z, Tan X, Zhang Z, Gu S, Li G, Shi H (2012) Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling. Plant Sci 184:75–82

    PubMed  CAS  Google Scholar 

  • Wu T, Guo A, Zhao Y, Wang X, Wang Y, Zhao D, Li X, Ren H, Dong H (2010) Ectopic expression of the rice lumazine synthase gene contributes to defense responses in transgenic tobacco. Phytopathology 100:573–581

    PubMed  CAS  Google Scholar 

  • Wu S, Lu D, Kabbage M, Wei H-L, Swingle B, Records AR, Dickman M, He P, Shan L (2011) Bacterial effector HopF2 suppresses Arabidopsis innate immunity at the plasma membrane. Mol Plant Microbe Interact 24:585–593

    PubMed  CAS  Google Scholar 

  • Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, Zhou J-M (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18:74–80

    PubMed  CAS  Google Scholar 

  • Yalowsky S, Baluska F, Jones A (2010) Integrated G proteins signaling in plants. Springer, Heidelberg

    Google Scholar 

  • Yamamizo C, Kuchimura K, Kobayashi A, Katou S, Kawakita K, Jones JDG, Doke N, Yoshioka H (2006) Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol 140:681–692

    PubMed  CAS  Google Scholar 

  • Yazawa K, Jiang C-J, Kojima M, Sakakibara H, Takatsuji H (2012) Reduction of abscisic acid signaling in rice during the early phase of Magnaporthe oryzae infection decreases its susceptibility to the fungus. Physiol Mol Plant Pathol 78:1–7

    CAS  Google Scholar 

  • Zamioudis C, Peterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    PubMed  CAS  Google Scholar 

  • Zhang J, Zhou J-M (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3:783–793

    PubMed  CAS  Google Scholar 

  • Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou J-M (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1:175–185

    PubMed  CAS  Google Scholar 

  • Zhang W, Chen J, Zhang H, Song F (2008) Overexpression of a rice diacylglycerol kinase gene OsBIDK1 enhances disease resistance in transgenic tobacco. Mol Cells 26:258–264

    PubMed  Google Scholar 

  • Zhang L, Xi D, Luo L, Meng F, Li Y, Wu CA, Guo X (2011) Cotton GhMPK2 is involved in multiple signaling pathways and mediates defense responses to pathogen infection and oxidative stress. FEBS J 278:1267–1378

    Google Scholar 

  • Zhang H, Gao Z, Zheng X, Zhang Z (2012) The role of G-proteins in plant immunity. Plant Signal Behav 7:1284–1288

    PubMed  CAS  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:596–605

    Google Scholar 

  • Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7:2

    PubMed  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    PubMed  CAS  Google Scholar 

  • Zipfel C, Felix G (2005) Plants and animals: a different taste for microbes? Curr Opin Plant Biol 8:353–360

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vidhyasekaran, P. (2014). Introduction. In: PAMP Signals in Plant Innate Immunity. Signaling and Communication in Plants, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7426-1_1

Download citation

Publish with us

Policies and ethics