Skip to main content

The gp82 Surface Molecule of Trypanosoma cruzi Metacyclic Forms

  • Chapter
  • First Online:
Book cover Proteins and Proteomics of Leishmania and Trypanosoma

Part of the book series: Subcellular Biochemistry ((SCBI,volume 74))

Abstract

Gp82 is a surface glycoprotein expressed in Trypanosoma cruzi metacyclic trypomastigotes, the parasite forms from the insect vector that initiate infection in the mammalian host. Studies with metacyclic forms generated in vitro, as counterparts of insect-borne parasites, have shown that gp82 plays an essential role in host cell invasion and in the establishment of infection by the oral route. Among the gp82 properties relevant for infection are the gastric mucin-binding capacity and the ability to induce the target cell signaling cascades that result in actin cytoskeleton disruption and lysosome exocytosis, events that facilitate parasite internalization. The gp82 sequences from genetically divergent T. cruzi strains are highly conserved, displaying >90 % identity. Both the host cell-binding sites, as well as the gastric mucin-binding sequence of gp82, are localized in the C-terminal domain of the molecule. In the gp82 structure model, the main cell-binding site consists of an α-helix, which connects the N-terminal β-propeller domain to the C-terminal β-sandwich domain, where the second cell binding site is nested. The two cell binding sites are fully exposed on gp82 surface. Downstream and close to the α-helix is the gp82 gastric mucin-binding site, which is partially exposed. All available data support the notion that gp82 is structurally suited for metacyclic trypomastigote invasion of host cells and for initiating infection by the oral route.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACD:

Acute Chagas’ disease

DAG:

Diacylglycerol

EIEC:

Enteroinvasive Escherichia coli

GST:

Glutathione S transferase

IP3:

Inositol 1,4,5-triphosphate

MT:

Metacyclic trypomastigotes

mTOR:

Mammalian target of rapamycin

PI3K:

Phosphatidylinositol 3-kinase

PTK:

Protein tyrosine kinase

TCT:

Tissue culture trypomastigotes

PKC:

Protein kinase C

PLC:

Phospholipase C

References

  • Alarcón de Noya BA, Diaz-Bello Z, Colmenares C, Ruiz-Guevara R, Mauriello L, Zavala-Jaspe R, Suarez JA, Abate T, Naranjo L, Paiva M, Rivas L, Castro J, Márques J, Mendoza I, Acquatella H, Torres J, Noya O (2010) Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. J Infect Dis 201:1308–1315

    Article  PubMed  Google Scholar 

  • Alves MJM, Colli W (2008) Role of the gp85/trans-sialidase superfamily of glycoproteins in the interaction of Trypanosoma cruzi with host structures. Subcell Biochem 47:58–69

    Article  PubMed  Google Scholar 

  • Amaya MF, Buschiazzo A, Nguyen T, Alzari PM (2003) The high resolution structures of free and inhibitor-bound Trypanosoma rangeli sialidase and its comparison with T. cruzi trans-sialidase. J Mol Biol 325:773–784

    Article  PubMed  CAS  Google Scholar 

  • Amiri KI, Richmond A (2005) Role of nuclear factor-kappa B in melanoma. Cancer Metastasis Rev 24:301–313

    Article  PubMed  CAS  Google Scholar 

  • Araya JE, Cano MI, Yoshida N, da Silveira JF (1994) Cloning and characterization of a gene for the stage-specific 82-kDa surface antigen of metacyclic trypomastigotes of Trypanosoma cruzi. Mol Biochem Parasitol 65:161–169

    Article  PubMed  CAS  Google Scholar 

  • Atayde VD, Cortez M, Souza R, da Silveira JF, Yoshida N (2007) Expression and cellular localization of molecules of gp82 family in Trypanosoma.cruzi metacyclic trypomastigotes. Infect Immun 75:3264–3270

    Article  PubMed  CAS  Google Scholar 

  • Atayde VD, Jasiulionis M, Cortez M, Yoshida N (2008) A recombinant protein based on Trypanosoma cruzi surface molecule gp82 induces apoptotic cell death in melanoma cells. Melanoma Res 18:172–183

    Article  PubMed  CAS  Google Scholar 

  • Bastos CJC, Aras R, Mota G, Reis F, Dias JP, Jesus RS, Freire MS, Araújo EG, Prazeres J, Grassi MFR (2010) Clinical outcomes of thirteen patients with acute Chagas disease acquired through oral transmission from two urban outbreaks in Northeastern Brazil. PLoS Negl Trop Dis 4(6):e711

    Article  PubMed  Google Scholar 

  • Bayer-Santos E, Gentil LG, Cordero EM, Corrêa PR, da Silveira JF (2012) Regulatory elements in the 3′ untranslated region of the GP82 glycoprotein are responsible for its stage-specific expression in Trypanosoma cruzi metacyclic trypomastigotes. Acta Trop 123:230–233

    Article  PubMed  CAS  Google Scholar 

  • Beltrão HB, Cerroni MP, Freitas DR, Pinto AY, Valente VC, Valente SA, Costa EG, Sobel J (2009) Investigation of two outbreaks of suspected oral transmission of acute Chagas disease in the Amazon region, Para State, Brazil, in 2007. Trop Doct 39:231–232

    Article  Google Scholar 

  • Brener Z, Chiari E (1963) Variações morfológicas observadas em diferentes amostras de Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 5:220–224

    PubMed  CAS  Google Scholar 

  • Burleigh BA, Andrews NW (1998) Signaling and host cell invasion by Trypanosoma cruzi. Curr Opin Microbiol 1:451–465

    Article  Google Scholar 

  • Buschiazzo A, Amaya MF, Cremona ML, Frasch AC, Alzari PM (2002) The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Mol Cell 10:757–768

    Article  PubMed  CAS  Google Scholar 

  • Cavalcanti LPG, Rolim DB, Neto RJP, Vilar DCL, Nogueira JOL, Pompeu MML, Teixeira MJ, Sousa AQ (2009) Microepidemia de doença de Chagas aguda por transmissão oral no Ceará. Cad Saúde Colet 17:911–921

    Google Scholar 

  • Chang HY, Yang X (2000) Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 64:821–846

    Article  PubMed  CAS  Google Scholar 

  • Cortez M, Neira I, Ferreira D, Luquetti AO, Rassi A, Atayde VD, Yoshida N (2003) Infection by Trypanosoma cruzi metacyclic forms deficient in gp82 but expressing a related surface molecule gp30. Infect Immun 71:6184–6191

    Article  PubMed  CAS  Google Scholar 

  • Cortez M, Atayde V, Yoshida N (2006) Host cell invasion mediated by Trypanosoma cruzi surface molecule gp82 is associated with F-actin disassembly and is inhibited by enteroinvasive Escherichia coli. Microbes Infect 8:1502–1512

    Article  PubMed  CAS  Google Scholar 

  • Cortez C, Yoshida N, Bahia D, Sobreira TJP (2012a) Structural basis of the interaction of a Trypanosoma cruzi surface molecule implicated in oral infection with host cells and gastric mucin. PLoS One 7(7):e42153

    Article  PubMed  CAS  Google Scholar 

  • Cortez C, Martins RM, Alves RM, Silva RC, Bilches LC, Macedo S, Atayde VD, Kawashita SY, Briones MRS, Yoshida N (2012b) Differential infectivity by the oral route of Trypanosoma cruzi lineages derived from Y strain. PLoS Negl Trop Dis 6(10):e1804

    Article  PubMed  CAS  Google Scholar 

  • Cossart P, Sansonetti PJ (2004) Bacterial invasion: the paradigm of enteroinvasive pathogens. Science 304:242–248

    Article  PubMed  CAS  Google Scholar 

  • Cossart P, Pizarro-Cerdá J, Lecuit M (2003) Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular function. Trends Cell Biol 13:23–31

    Article  PubMed  CAS  Google Scholar 

  • Deane MP, Lenzi HL, Jansen A (1984) Trypanosoma cruzi: vertebrate and invertebrate cycles in the same mammal host, the opossum Didelphis marsupialis. Mem Inst Oswaldo Cruz 79:513–515

    Article  PubMed  CAS  Google Scholar 

  • Dhawan P, Richmond A (2002) A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 277:7920–7928

    Article  PubMed  CAS  Google Scholar 

  • Dias JP, Bastos C, Araújo E, Mascarenhas AV, Netto EM, Grassi F, Silva M, Tatto E, Mendonça J, Araújo RF, Shikanai-Yasuda MA, Aras R (2008) Acute Chagas disease outbreak associated with oral transmission. Rev Soc Bras Med Trop 41:296–300

    Article  PubMed  Google Scholar 

  • Docampo R, Moreno SN (1996) The role of Ca2+ in the process of cell invasion by intracellular parasites. Parasitol Today 12:61–65

    Article  PubMed  CAS  Google Scholar 

  • Eickhoff CS, Giddings OK, Yoshida N, Hoft DF (2010) Immune responses to gp82 provide protection against mucosal Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 105:687–691

    Article  PubMed  CAS  Google Scholar 

  • Favoreto S Jr, Dorta ML, Yoshida N (1998) Trypanosoma cruzi 175 kDa protein tyrosine phosphorylation is associated with host cell invasion. Exp Parasitol 89:188–194

    Article  PubMed  CAS  Google Scholar 

  • Ferreira D, Cortez M, Atayde VD, Yoshida N (2006) Actin cytoskeleton-dependent and -independent host cell invasion by Trypanosoma cruzi is mediated by distinct parasite surface molecules. Infect Immun 74:5522–5528

    Article  PubMed  CAS  Google Scholar 

  • Gentil LG, Cordero EM, do Carmo MS, dos Santos MR, da Silveira JF (2009) Posttranscriptional mechanisms involved in the control of expression of the stage-specific GP82 surface glycoprotein in Trypanosoma cruzi. Acta Trop 109:152–158

    Article  PubMed  CAS  Google Scholar 

  • Giordano R, Fouts D, Tewari D, Colli W, Manning JE, Ales MJM (1999) Cloning of a surface membrane glycoprotein specific for the infective form of Trypanosoma cruzi having adhesive properties to laminin. J Biol Chem 274:3461–3468

    Article  PubMed  CAS  Google Scholar 

  • Gourlay CW, Ayscough KR (2005) The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol 6:583–589

    Article  PubMed  CAS  Google Scholar 

  • Hoft DF, Farrar PL, Kratz-Owens SD (1996) Gastric invasion by Trypanosoma cruzi and induction of protective mucosal immune responses. Infect Immun 64:3800–3810

    PubMed  CAS  Google Scholar 

  • Lan R, Lumb B, Ryan D, Reeves PR (2001) Molecular evolution of large virulence plasmid in Shigella clones and enteroinvasive E. coli. Infect Immun 69:6303–6309

    Article  PubMed  CAS  Google Scholar 

  • Maeda FY, Alves RM, Cortez C, Lima FM, Yoshida N (2011) Characterization of the infective properties of a new genetic group of Trypanosoma cruzi associated with bats. Acta Trop 120:231–237

    Article  PubMed  CAS  Google Scholar 

  • Maeda FY, Cortez C, Alves RM, Yoshida N (2012) Mammalian cell invasion by closely related Trypanosoma species T. dionisii and T. cruzi. Acta Trop 121:141–147

    Article  PubMed  Google Scholar 

  • Manque PM, Eichinger D, Juliano MA, Juliano L, Araya J, Yoshida N (2000) Characterization of the cell adhesion site of Trypanosoma cruzi metacyclic stage surface glycoprotein gp82. Infect Immun 68:478–484

    Article  PubMed  CAS  Google Scholar 

  • Marcili A, Lima L, Cavazzana M Jr, Junqueira ACV, Velduo HH, Silva FM, Campaner M, Paiva R, Nunes VLB, Teixeira MMG (2009) A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and histone H2B genes and genotyping bases on ITS1 rDNA. Parasitol 136:641–655

    Article  CAS  Google Scholar 

  • Marroquin-Quelopana M, Oyama S Jr, Pertinhez TA, Spisni A, Juliano MA, Juliano J, Colli W, Alves MJM (2004) Modeling the Trypanosoma cruzi Tc85-11 protein and mapping the laminin-binding site. Biochem Biophy Res Commun 325:612–618

    Article  CAS  Google Scholar 

  • Martins RM, Alves RM, Macedo S, Yoshida N (2011) Starvation and rapamycin differentially regulate host cell lysosome exocytosis and invasion by Trypanosoma cruzi metacyclic forms. Cell Microbiol 13:943–954

    Google Scholar 

  • McNulty SE, del Rosario R, Cen D, Meyskens FL Jr, Yang S (2004) Comparative expression of NF-kappaB proteins in melanocytes of normal skin vs. benign intradermal naevus and human metastatic melanoma biopsies. Pigment Cell Res 17:173–180

    Article  PubMed  CAS  Google Scholar 

  • Neira I, Ferreira AT, Yoshida N (2002) Activation of distinct signal transduction pathways in Trypanosoma cruzi isolates with differential capacity to invade host cells. Int J Parasitol 32:405–414

    Article  PubMed  CAS  Google Scholar 

  • Nóbrega AA, Garcia MH, Tatto E, Obara MT, Costa E, Sobel J, Araujo WN (2009) Oral transmission of Chagas disease by consumption of açaí palm fruit, Brazil. Emerg Infect Dis 15:653–655

    Article  PubMed  Google Scholar 

  • Rajkumar R, Devaraj H, Niranjali S (1998) Binding of Shigella to rat and human intestinal mucin. Mol Cel Biochem 178:261–268

    Article  CAS  Google Scholar 

  • Ramirez MI, Ruiz RC, Araya JE, Franco da Silveira J, Yoshida N (1993) Involvement of the stage-specific 82-kilodalton adhesion molecule of Trypanosoma cruzi metacyclic trypomastigotes in host cell invasion. Infect Immun 61:3636–3641

    PubMed  CAS  Google Scholar 

  • Ríos JF, Arboleda M, Montoya AN, Alarcón EP, Parra-Henao GJ (2011) Probable brote de transmisión oral de enfermedad de Chagas en Turbo. Antioquia Bioméd 31:185–195

    Google Scholar 

  • Rodriguez A, Rioult MG, Ora A, Andrews NW (1995) A trypanosome-soluble factor induces IP3 formation, intracellular Ca2+ mobilization and microfilament rearrangement in host cells. J Cell Biol 129:1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez A, Martinez I, Chung A, Berlot CH, Andrews NW (1999) cAMP regulates Ca2 + -dependent exocytosis of lysosomes and lysosome-mediated cell invasion by trypanosomes. J Biol Chem 274:16754–16759

    Article  PubMed  Google Scholar 

  • Romano PS, Arboit MA, Vásquez CL, Colombo MI (2009) The autophagic pathway is a key component in the lysosomal dependent entry of Trypanosoma cruzi into the host cell. Autophagy 5:6–18

    Article  PubMed  CAS  Google Scholar 

  • Ruiz RC, Favoreto S Jr, Dorta ML, Oshiro MEM, Ferreira AT, Manque PM, Yoshida N (1998) Infectivity of Trypanosoma cruzi strains is associated with differential expression of surface glycoproteins with differential Ca2+ signaling activity. Biochem J 330:505–511

    PubMed  CAS  Google Scholar 

  • Sansonetti PJ, d’Hautevite H, Echobicon C, Pourcel C (1983) Molecular comparison of virulence plasmids Shigella and enteroinvasive E. coli. Ann Microbiol 134 A:295–318

    Google Scholar 

  • Santori FR, Dorta ML, Juliano L, Juliano MA, da Franco Silveira J, Ruiz RC, Yoshida N (1996a) Identification of a domain of Trypanosoma cruzi metacylcic tryopomastigote surface molecule gp82 required for attachment and invasion of mammalian cells. Mol Biochem Parasitol 78:209–216

    Article  PubMed  CAS  Google Scholar 

  • Santori FR, Paranhos-Bacalla GS, Franco da Silveira J, Yamauchi LM, Araya JE, Yoshida N (1996b) A recombinant protein based on the Trypanosoma cruzi metacyclic trypomastigotes 82-kilodalton antigen that induces an effective immune response to acute infection. Infect Immun 64:1093–1099

    CAS  Google Scholar 

  • Silva NN, Clausell DT, Nóbilos H, Mello AL, Ossanai J, Rapone T, Snell T (1968) Surto epidêmico de doença de Chagas com provável contaminação oral. Rev Inst Med Trop Sao Paulo 10:265–276

    PubMed  Google Scholar 

  • Staquicini DI, Martins RMM, Macedo S, Sasso GRS, Atayde VD, Juliano MA, Yoshida N (2010) Role of gp82 in the selective binding to gastric mucin during infection with Trypanosoma cruzi. PLoS Negl Trop Dis 4(3):e613

    Article  PubMed  Google Scholar 

  • Stebbins CE, Galán JE (2001) Structural mimicry in bacterial virulence. Nature 412:701–705

    Article  PubMed  CAS  Google Scholar 

  • Steindel M, Pacheco LK, Scholl D, Soares M, Moraes MH, Eger I, Kosmann C, Sincero TCM, Stoco PH, Murta SMF, Carvalho-Pinto CJ, Grisard EC (2008) Characterization of Trypanosoma cruzi isolated from human vectors, and animal reservoirs following an outbreak of acute human Chagas disease in Santa Catarian State, Brazil. Diagn Microbiol Infect Dis 60:25–32

    Article  PubMed  CAS  Google Scholar 

  • Tardieux I, Webster P, Ravesloot J, Boron W, Lunn JA, Heuser JE, Andrews (1992) Lysosome recruitment and fusion are early events required for Trypanosoma invasion of mammalian cells. Cell 71:1117–1130

    Article  PubMed  CAS  Google Scholar 

  • Teixeira MMG, Yoshida N (1986) Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol Biochem Parasitol 18:271–282

    Article  PubMed  CAS  Google Scholar 

  • Tzouvelekis LS, Mentis AF, Makris AM, Spiliadis C, Blackwell C, Weir DM (1991) In vitro binding of Helicobacter pylori to human gastric mucin. Infect Immun 59:4252–4254

    PubMed  CAS  Google Scholar 

  • White SR, Williams P, Wojcik KR, Sun S, Hiemstra PS, Rabe KF, Dorscheid DR (2001) Initiation of apoptosis by actin cytoskeletal derangement in human airway epithelial cells. Am J Respir Cell Mol Biol 24:282–294

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Tsuruga M, Zhou D, Fujita Y, Shang X, Dang Y, Kawasaki K, Oka S (2000) Cytoskeletal disruption accelerates caspase-3 activation and alters the intracellular membrane reorganization in DNA damage-induced apoptosis. Exp Cell Res 259:64–78

    Article  PubMed  CAS  Google Scholar 

  • Yoshida N (1983) Surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi. Infect Immun 40:836–839

    PubMed  CAS  Google Scholar 

  • Yoshida N, Araya JE, Franco da Silveira J, Giorgio S (1993) Trypanosoma cruzi: antibody production and T cell response induced by stage-specific surface glycoproteins purified from metacyclic trypomastigotes. Exp Parasitol 77:405–413

    Article  PubMed  CAS  Google Scholar 

  • Yoshida N, Favoreto S Jr, Ferreira AT, Manque PM (2000) Signal transduction induced in Trypanosoma cruzi metacyclic trypomastigotes during the invasion of mammalian cells. Braz J Med Biol Res 33:269–278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

 Work supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Cientfico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuko Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cortez, C., Sobreira, T.J.P., Maeda, F.Y., Yoshida, N. (2014). The gp82 Surface Molecule of Trypanosoma cruzi Metacyclic Forms. In: Santos, A., Branquinha, M., d’Avila-Levy, C., Kneipp, L., Sodré, C. (eds) Proteins and Proteomics of Leishmania and Trypanosoma. Subcellular Biochemistry, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7305-9_6

Download citation

Publish with us

Policies and ethics