Skip to main content

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 299))

Abstract

The discovery of superconductivity could not have happened without the liquefaction of helium by the Dutch physicist Heike Kamerlingh Onnes in 1908, which allowed physicists to reach temperatures close to absolute zero. Helium liquefaction was the result of Kamerlingh Onnes’s lifelong enterprise to apply large-scale industrial means to fundamental research. It delivered the final blow to nineteenth-century conceptions about the existence of non-liquefiable “permanent” gases. Until 1923, his Leiden cryogenic lab would remain the only place in the world where helium could be liquefied (see, e.g., van Delft 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That Onnes often strayed from the path indicated by his famous dictum is demonstrated in (Matricon and Waysand 2003:18ff).

  2. 2.

    Similar models had already been proposed independently by the Swedish metallurgist Carl Benedicks and the American physicist Percy Bridgman (Benedicks 1916; Bridgman 1917; see also Kaiser 2001).

  3. 3.

    At the time, thermal measurements were not sensitive enough to detect the jump in specific heat at the transition that would have suggested a phase transition (see below).

  4. 4.

    The use of the word quantum mechanics [Quanten-Mechanik] in (Einstein 1922), to our knowledge, is one of the earliest—if not the earliest—appearance of this term that would raise to prominence with the advent of quantum mechanics in 1925. It is to be noted, however, that Einstein refers here to a quantum-theoretical many-body mechanics, rather than to a new “quantum” mechanics that is to replace classical mechanics, which is how the term would be later used by Born and Heisenberg.

  5. 5.

    In 1933, Lev Landau published a similar idea in a paper that foreshadows elements of his later work with Ginzburg (Landau 1933).

  6. 6.

    For a detailed historical analysis of Ehrenfest’s classification of phase transitions, see (Jaeger 1998).

  7. 7.

    Nous allons montrer que le problème que l’on a attaqué de façon si malencontreuse n’est pas posé par la nature des faits, que l’interprétation des expériences a dépassé les faits observés; et c’est pour cette raison qu’on a posé à la théorie électronique un problème certainement insoluble.

  8. 8.

    A similar passage can be already found earlier (London and London 1935:87), received by the journal in October 1934 (“But now suppose the electrons to be coupled by some form of interaction. Then the lowest state of the electrons may be separated by a finite distance from the excited ones and the disturbing influence of the field on the eigenfunctions can only be appreciable if it is of the same order of magnitude as the coupling forces.”).

  9. 9.

    For a detailed account of the history of BCS theory, see (Matricon and Waysand 2003:146ff). See also (Hoddeson et al. 1992; Hoddeson and Daitch 2002).

  10. 10.

    For an example, see (Bloch 1966).

  11. 11.

    See the contribution by Knolle and Joas, Chap. 7 in the present volume, and the references therein.

References

  • Allen, F., and A.D. Misener. 1938. Flow of liquid helium II. Nature 141: 75.

    Article  Google Scholar 

  • Badino, M. 2012. Productive conservatism: Planck’s second theory of radiation. Annalen der Physik 524(2): A29–A31.

    Article  Google Scholar 

  • Bardeen, J. 1963. Developments of concepts in superconductivity. Physics Today 16(1): 19–28.

    Article  Google Scholar 

  • Bardeen, J., L.N. Cooper, and J.R. Schrieffer. 1957. Theory of superconductivity. Physical Review 108: 1175–1204.

    Article  Google Scholar 

  • Benedicks, C.A.F. 1916. Beiträge zur Kenntnis der Elektrizitätsleitung in Metallen und Legierungen. Jahrbuch der Radioaktivität und Elektronik 13: 351–395.

    Google Scholar 

  • Bloch, F. 1928. Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Physik 52: 555–600.

    Article  Google Scholar 

  • Bloch, F. 1966. Some remarks on the theory of superconductivity. Physics Today 19(5): 27–36.

    Article  Google Scholar 

  • Bridgman, P.W. 1917. Theoretical considerations on the nature of metallic resistance with especial regard to the pressure effect. Physical Review 9: 269–289.

    Article  Google Scholar 

  • Dahl, P.F. 1992. Superconductivity. Its historical roots and development from mercury to the ceramic oxides. New York: American Institute of Physics.

    Google Scholar 

  • Ehrenfest, P. 1933. Phasenumwandlungen im üblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitäten des thermodynamischen Potentiales. Verhandlingen der Koninklijke Akademie van Wetenschappen (Amsterdam) 36:153–157. Also published in Communications from the Physical Laboratory of the University of Leiden, Suppl. No. 75b (1933).

    Google Scholar 

  • Einstein, A. 1922. Theoretische Bemerkungen zur Supraleitung der Metalle. Gedenkboek Kamerlingh Onnes, Leiden (11 March 1922), 429–435.

    Google Scholar 

  • Einstein, A. 1925. Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung. Sitzungsberichte der Preußischen Akademie der Wissenschaften zu Berlin, 3–14.

    Google Scholar 

  • Feynman, R.P. 1957. Superfluidity and superconductivity. Reviews of Modern Physics 29: 205–212.

    Article  Google Scholar 

  • Fröhlich, H. 1950. Theory of the superconducting state. I. The ground state at the absolute zero of temperature. Physical Review 79: 845–856.

    Article  Google Scholar 

  • Gavroglu, K. 1995. Fritz London. A scientific biography. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gavroglu, K., and Y. Goudaroulis. 1984. Some methodological and historical considerations in low temperature physics: The case of superconductivity 1911–1957. Annals of Science 41: 135–149.

    Article  Google Scholar 

  • Gavroglu, K., and G. Goudaroulis. 1985. From the history of low temperature physics: Prejudicial attitudes that hindered the initial development of superconductivity theory. Archive for History of Exact Sciences 32: 377–383.

    Article  Google Scholar 

  • Gavroglu, K., and G. Goudaroulis. 1989. Quantum mechanics and macroscopic quantum phenomena: The case of superconductivity and superfluidity. Zeitschrift für allgemeine Wissenschaftstheorie 20(2): 249–270.

    Article  Google Scholar 

  • Gavroglu, K., and A. Simões. 2012. Neither physics nor chemistry: A history of quantum chemistry. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Ginzburg, V.L., and L.D. Landau. 1950. On the theory of superconductivity. Zhurnal Eksperimental’noi i Theoreticheskoi Fiziki 20: 1064–1082. Reprinted in L. D. Landau, Collected Papers, ed. Ter-Haar, D, 1965. New York: Gordon and Breach.

    Google Scholar 

  • Goodstein, D., and J. Goodstein. 2000. Richard Feynman and the history of superconductivity. Physics in Perspective 2: 30–46.

    Article  Google Scholar 

  • Gorkov, L.P. 2011. Developing BCS ideas in the former Soviet Union. In BCS: 50 Years, ed. L.N. Cooper and D. Feldman, 107–126. Singapore: World Scientific.

    Google Scholar 

  • Gorter, C.J., and H. Casimir. 1934. On supraconductivity I. Physica 1: 306–320.

    Article  Google Scholar 

  • Haber, F. 1919a. Beitrag zur Kenntnis der Metalle. Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), 1919: 506–518.

    Google Scholar 

  • Haber, F. 1919b. Zweiter Beitrag zur Kenntnis der Metalle. Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin) 1919: 990–1007.

    Google Scholar 

  • Heitler, W., and F. London. 1927. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik 44(6): 455–472.

    Article  Google Scholar 

  • Hoddeson, L., and G. Baym. 1980. The development of the quantum-mechanical electron theory of metals 1900–1928. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 371: 8–23.

    Article  Google Scholar 

  • Hoddeson, L., and V. Daitch. 2002. True genius: The life and science of John Bardeen. Washington, DC: Joseph Henry Press.

    Google Scholar 

  • Hoddeson, L., G. Baym, and M. Eckert. 1987. The development of the quantum-mechanical electron theory of metals: 1928–1933. Reviews of Modern Physics 59: 287–327.

    Article  Google Scholar 

  • Hoddeson, L., E. Braun, J. Teichmann, and S. Weart (eds.). 1992. Out of the crystal maze. Chapters from the history of solid-state physics. Oxford: Oxford University Press.

    Google Scholar 

  • Jaeger, G. 1998. The Ehrenfest classification of phase transitions: Introduction and evolution. Archive for History of Exact Sciences 53: 51–81.

    Article  Google Scholar 

  • Joas, C., and G. Waysand. 2011. Von Leitungsketten zur Paarhypothese. Die Entdeckung der Supraleitung und die wechselvolle Geschichte ihrer Erklärung. Physik Journal 10(6): 23–28.

    Google Scholar 

  • Kaiser, W. 2001. Electron gas theory of metals: Free electrons in bulk matter. In Histories of the electron. The birth of microphysics, ed. J.Z. Buchwald and A. Warwick. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Kamerlingh Onnes, H. 1913. Nobel lecture. Available online: http://nobelprize.org/nobel_prizes/physics/laureates/1913/onnes-lecture.html. Last accessed 30 Jan 2013.

  • Kapitza, P. 1938. Viscosity of liquid Helium below the λ-point. Nature 141: 74.

    Article  Google Scholar 

  • Kuhn, T.S. 1978. Black-body theory and the quantum discontinuity, 1894–1912. Oxford: Oxford University Press.

    Google Scholar 

  • Laesecke, A. 2002. Through measurement to knowledge: The inaugural lecture of Heike Kamerlingh Onnes (1882). Journal of Research of the National Institute of Standards and Technology 107: 261–277.

    Article  Google Scholar 

  • Landau, L. 1933. Zur Theorie der Supraleitfähigkeit. Physikalische Zeitschrift der Sowjetunion 4: 43–49.

    Google Scholar 

  • Lindemann, F.A. 1915. XII. Note on the theory of the metallic state. Philosophical Magazine, Series 6 (1901–1925) 29(169): 127–140.

    Article  Google Scholar 

  • London, F. 1935. Macroscopical interpretation of supraconductivity. Proceedings of the Royal Society of London. Series A: Mathematical and Physical 152: 24–34.

    Google Scholar 

  • London, F. 1938. The λ-phenomenon of liquid Helium and the Bose-Einstein degeneracy. Nature 141: 643–644.

    Article  Google Scholar 

  • London, F. 1939. Une conception nouvelle de la supra-conductibilité. Paris: Hermann. Commented edition: Matricon, J., and Waysand, J. 2005. Paris: Hermann.

    Google Scholar 

  • London, F., and H. London. 1935. The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A: Mathematical and Physical 149: 71–88.

    Article  Google Scholar 

  • Matricon, J., and G. Waysand. 2003. The cold wars. A history of superconductivity. Trans. from French edition “La guerre du froid”, éditions du Seuil, Paris 1994 by Charles Glasshauser. New Brunswick: Rutgers University Press.

    Google Scholar 

  • Maxwell, E. 1950. Isotope effect in the superconductivity of mercury. Physical Review 78: 477.

    Article  Google Scholar 

  • Mehra, J., and H. Rechenberg. 2000. The historical development of quantum theory. Vol. 6: The completion of quantum mechanics 1926–1941, Part 1. New York: Springer.

    Google Scholar 

  • Meissner, W., and R. Ochsenfeld. 1933. Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Die Naturwissenschaften 21: 787–788.

    Article  Google Scholar 

  • Reynolds, C.A., B. Serin, W.H. Wright, and L.B. Nesbitt. 1950. Superconductivity of isotopes of mercury. Physical Review 78: 487.

    Article  Google Scholar 

  • Sauer, T. 2007. Einstein and the early theory of superconductivity, 1919–1922. Archive for History of Exact Sciences 61: 159–211.

    Article  Google Scholar 

  • Schafroth, M.R., and J.M. Blatt. 1955. Phenomenological equations for superconductors. Physical Review 100: 1221–1222.

    Article  Google Scholar 

  • Schmalian, J. 2011. Failed theories of superconductivity. In BCS: 50 Years, ed. L.N. Cooper and D. Feldman, 41–55. Singapore: World Scientific. Preprint: arxiv.org/pdf/1008.0447.

  • Simon, F. 1927. Zum Prinzip von der Unerreichbarkeit des absoluten Nullpunktes. Zeitschrift für Physik 41: 806–809.

    Article  Google Scholar 

  • van Delft, D. 2007. Freezing physics: Heike Kamerlingh Onnes and the quest for cold. Amsterdam: Edita.

    Google Scholar 

Download references

Acknowledgments 

Substantial parts of this text are based on a German article published in Physik Journal (Joas and Waysand 2011). The authors wish to thank Dieter Hoffmann, Jeremiah James, Stefan Jorda, Johannes Knolle, Jean Matricon, and Alexander Pawlak for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Joas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Joas, C., Waysand, G. (2014). Superconductivity—A Challenge to Modern Physics. In: Gavroglu, K. (eds) History of Artificial Cold, Scientific, Technological and Cultural Issues. Boston Studies in the Philosophy and History of Science, vol 299. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7199-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7199-4_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7198-7

  • Online ISBN: 978-94-007-7199-4

  • eBook Packages: Humanities, Social Sciences and LawHistory (R0)

Publish with us

Policies and ethics