Skip to main content

Metastatic Dissemination

  • Chapter
  • First Online:
Book cover Prostate Cancer: Shifting from Morphology to Biology
  • 1198 Accesses

Abstract

In spite of recent developments in diagnosis, staging and treatment, most patients with advanced prostate cancer will ultimately progress from androgen-sensitive to an irreversible castration-resistant disease. These androgen-independent cancers frequently give rise to widespread metastasis, dramatically reducing the median survival of patients (Tannock et al, N Engl J Med, 351(15):1502–1512, 2004) and accounting for more than 32, 000 deaths/year in USA (Jemal et al, CA Cancer J Clin, 60:277–300, 2010), which correspond to over 90 % of PC related mortality (Man, Gardner, Int J Biol Sci, 4(4):246–258, 2008).

It is a common belief that cancer metastasis result from a multi-stage nonrandom process characterized by intricate interactions between cancer cells and the host microenvironment, leading to the detachment of cancer cells from their tissue of origin, their dissemination through the bloodstream and to invasion of the target metastatic site (Patel et al, Future Oncol, 7(11):1285–1297, 2011).

Metastasis represents yet one of the most enigmatic aspects of prostate cancer pathogenesis, in which a cascade of proteolytic enzymes, inflammatory cytokines, growth factors, activated oncogenes, oxidative stress and hypoxia linked proteins and adhesion molecules, orchestrate a continuous loop that enable migrating cancer cells detached from the primary tumor bulk, to survive and proliferate in an adverse remote body microenvironment.

In this chapter, we discuss the nature and alterations of the signaling pathways involved in the development of prostate cancer metastasis, reporting the current status of knowledge on the changes occurring either in prostate cancer cells and in tumor-associated stromal tissue, with particular emphasis to the process of epithelial-mesenchymal transition (“phenotypic plasticity”) and to the role of cancer stem cells in prostate cancer progression and metastasis.

We will highlight, also, the emerging data concerning new therapeutic targets for treatment of metastatic prostate cancer that, while deserving further inquiry, look very promising to improve our chances to successful approach the advanced disease or, even, primarily reduce the risk of metastasis from castration-resistant prostate cancer (Vashisht, Bagler, PLoS One, 7(11):e49401, 2012).

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846

    Article  CAS  PubMed  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  CAS  PubMed  Google Scholar 

  • Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory microenvironment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66(1):1–9

    Article  PubMed  Google Scholar 

  • Arai F, Yoshihara H, Hosokawa K, Nakamura Y, Gomei Y et al (2009) Niche regulation of hematopoietic stem cells in the endosteum. Ann N Y Acad Sci 1176:36–46

    Article  CAS  PubMed  Google Scholar 

  • Augello MA, Burd CJ, Birbe R, McNair C, Ertel A, Magee MS, Frigo DE, Wilder-Romans K, Shilkrut M, Han S, Jernigan DL, Dean JL, Fatatis A, McDonnell DP, Visakorpi T, Feng FY, Knudsen KE (2013) Convergence of oncogenic and hormone receptor pathways promotes metastatic phenotypes. J Clin Invest 123(1):493–508

    Article  CAS  PubMed  Google Scholar 

  • Bisson I, Prowse DM (2009) WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res 19:683–697

    Article  CAS  PubMed  Google Scholar 

  • Brennan SC, Thiem U, Roth S, Aggarwal A, Fetahu IS, Tennakoon S, Gomes AR, Brandi ML, Bruggeman F, Mentaverri R, Riccardi D, Kallay E (2013) Calcium sensing receptor signalling in physiology and cancer. Biochim Biophys Acta 1833(7):1732–1744

    Article  CAS  PubMed  Google Scholar 

  • Brett A, Pandey S, Fraizer G (2013) The Wilms’ tumor gene (WT1) regulates E-cadherin expression and migration of prostate cancer cells. Mol Cancer 12:3

    Article  CAS  PubMed  Google Scholar 

  • Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev 27:41–55

    Article  PubMed  Google Scholar 

  • Castellón EA, Valenzuela R, Lillo J, Castillo V, Contreras HR, Gallegos I, Mercado A, Huidobro C (2012) Molecular signature of cancer stem cells isolated from prostate carcinoma and expression of stem markers in different Gleason grades and metastasis. Biol Res 45(3):297–305

    Article  PubMed  Google Scholar 

  • Chappard D, Bouvard B, Baslé MF, Legrand E, Audran M (2011) Bone metastasis: histological changes and pathophysiological mechanisms in osteolytic or osteosclerotic localizations. A review. Morphologie 95(309):65–75. Epub 2011 May 28

    Article  CAS  PubMed  Google Scholar 

  • Cher ML, Towler DA, Rafii S et al (2006) Cancer interaction with the bone microenvironment: a workshop of the National Institutes of Health Tumor Microenvironment Study Section. Am J Pathol 168:1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Chu P, Clanton DJ, Snipas TS, Lee J, Mitchell E, Nguyen ML et al (2009) Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 124:1312–1321

    Article  CAS  PubMed  Google Scholar 

  • Chung LW, Baseman A, Assikis V, Zhau HE (2005) Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol 173:10–20

    Article  PubMed  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  CAS  PubMed  Google Scholar 

  • Colombel M, Eaton CL, Hamdy F, Ricci E, van der Pluijm G, Cecchini M, Mege-Lechevallier F, Clezardin P, Thalmann G (2012) Increased expression of putative cancer stem cell markers in primary prostate cancer is associated with progression of bone metastases. Prostate 72(7):713–720

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Wang J, Chen D, Chen YJ (2011) CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer. Oncol Rep 25:701–708

    CAS  PubMed  Google Scholar 

  • Czyż J, Szpak K, Madeja Z (2012) The role of connexins in prostate cancer promotion and progression. Nat Rev Urol 9(5):274–282

    Article  PubMed  Google Scholar 

  • Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163

    Article  CAS  PubMed  Google Scholar 

  • Desiniotis A, Kyprianou N (2011) Significance of talin in cancer progression and metastasis. Int Rev Cell Mol Biol 289:117–147

    Article  CAS  PubMed  Google Scholar 

  • Doan PL, Chute JP (2012) The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 26(1):54–62

    Article  CAS  PubMed  Google Scholar 

  • Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200:249–258

    Article  CAS  PubMed  Google Scholar 

  • Du WW, Yang W, Yee AJ (2013) Roles of versican in cancer biology – tumorigenesis, progression and metastasis. Histol Histopathol 28(6):701–713

    CAS  PubMed  Google Scholar 

  • Eastham JA (2007) Bone health in men receiving androgen deprivation therapy for prostate cancer. J Urol 177(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Eaton CL, Colombel M, van der Pluijm G, Cecchini M, Wetterwald A, Lippitt J et al (2010) Evaluation of the frequency of putative prostate cancer stem cells in primary and metastatic prostate cancer. Prostate 70:875–882

    PubMed  Google Scholar 

  • Efstathiou E, Logothetis CJ (2010) A new therapy paradigm for prostate cancer founded on clinical observations. Clin Cancer Res 16:1100–1107

    Article  CAS  PubMed  Google Scholar 

  • Eriksson S, Killander J, Wadman B (1972) Leuco-erythroblastic anaemia in prostatic cancer. Report of two cases with complete haematological remission. Scand J Haematol 9(6):648–653

    CAS  PubMed  Google Scholar 

  • Fan L, Wang H, Xia X, Rao Y, Ma X, Ma D, Wu P, Chen G (2012) Loss of E-cadherin promotes prostate cancer metastasis via upregulation of metastasis-associated gene 1 expression. Oncol Lett 4(6):1225–1233. Epub 2012 Sep 21

    CAS  PubMed  Google Scholar 

  • Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010) Identification of a cell of origin for human prostate cancer. Science 329:568–571

    Article  CAS  PubMed  Google Scholar 

  • Hu YY, Zheng MH, Zhang R, Liang YM, Han H (2012) Notch signaling pathway and cancer metastasis. Adv Exp Med Biol 727:186–198

    Article  CAS  PubMed  Google Scholar 

  • Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2(4):277–288. A comprehensive review of cell death pathways and survival mechanisms exploited by cancer

    Article  CAS  PubMed  Google Scholar 

  • Jacobs SC (1983) Spread of prostatic cancer to bone. Urology 21(4):337–344

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E (2010) Cancer statistics. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  • Jiang B, Mason J, Jewett A, Liu ML, Chen W, Qian J, Ding Y, Ding S, Ni M, Zhang X, Man YG (2013) Tumor-infiltrating immune cells: triggers for tumor capsule disruption and tumor progression? Int J Med Sci 10(5):475–497

    Article  CAS  PubMed  Google Scholar 

  • Jin HJ, Zhao JC, Ogden I, Bergan RC, Yu J (2013) Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res 73(12):3725–3736

    Article  CAS  PubMed  Google Scholar 

  • Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    Article  CAS  PubMed  Google Scholar 

  • Jung Y, Wang J, Song J, Shiozawa Y, Havens A et al (2007) Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 110(1):82–90

    Article  CAS  PubMed  Google Scholar 

  • Karlou M, Tzelepi V, Efstathiou E (2010) Therapeutic targeting of the prostate cancer microenvironment. Nat Rev Urol 7:494–509

    Article  PubMed  Google Scholar 

  • Keller ET, Zhang J, Cooper CR, Smith PC, McCauley LK et al (2001) Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastasis Rev 20(3–4):333–349

    Article  CAS  PubMed  Google Scholar 

  • Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8(4):290–301

    Article  CAS  PubMed  Google Scholar 

  • Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci U S A 107:2610–2615

    Article  CAS  PubMed  Google Scholar 

  • Lazari P, Poulias H, Gakiopoulou H, Thomopoulou GH, Barbatis C, Lazaris AC (2013) Differential immunohistochemical expression of CD44s, E-cadherin and β-catenin among hyperplastic and neoplastic lesions of the prostate gland. Urol Int 90(1):109–116. Epub 2012 Dec 5 Leukemia. 2011

    Article  CAS  PubMed  Google Scholar 

  • Li T, Su Y, Mei Y, Leng Q, Leng B, Liu Z et al (2010) ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab Invest 90:234–244

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215

    Article  CAS  PubMed  Google Scholar 

  • Loberg RD, Logothetis CJ, Keller ET, Pienta KJ (2005) Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype. J Clin Oncol 23:8232–8241

    Article  CAS  PubMed  Google Scholar 

  • Mai J, Waisman DM, Sloane BF (2000) Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. Biochim Biophys Acta 1477(1–2):215–230

    Article  CAS  PubMed  Google Scholar 

  • Man YG, Gardner WA (2008) Bad seeds produce bad crops: a single stage-process of prostate tumor invasion. Int J Biol Sci 4(4):246–258

    Article  CAS  PubMed  Google Scholar 

  • Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S et al (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67:3153–3161

    Article  CAS  PubMed  Google Scholar 

  • Morgan TM, Lange PH, Porter MP, Lin DW, Ellis WJ et al (2009) Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res 15(2):677–683

    Article  CAS  PubMed  Google Scholar 

  • Morrissey C, Vessella RL (2007) The role of tumor microenvironment in prostate cancer bone metastasis. J Cell Biochem 101:873–886

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8(5):341–352

    Article  CAS  PubMed  Google Scholar 

  • Norgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sorensen HT (2010) Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007). J Urol 184(1):162–167

    Article  PubMed  Google Scholar 

  • Osanto S, Van Poppel H (2012) Emerging novel therapies for advanced prostate cancer. Ther Adv Urol 4(1):3–12

    Article  PubMed  Google Scholar 

  • Pal M, Koul S, Koul HK (2013) The transcription factor sterile alpha motif (SAM) pointed domain-containing ETS transcription factor (SPDEF) is required for E-cadherin expression in prostate cancer cells. J Biol Chem 288(17):12222–12231

    Article  CAS  PubMed  Google Scholar 

  • Patel LR, Camacho DF, Shiozawa Y, Pienta KJ, Taichman RS (2011) Mechanisms of cancer cell metastasis to the bone: a multistep process. Future Oncol 7(11):1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    Article  CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67:6796–6805

    Article  CAS  PubMed  Google Scholar 

  • Pfitzenmaier J, Ellis WJ, Hawley S, Arfman EW, Klein JR et al (2007) The detection and isolation of viable prostate-specific antigen positive epithelial cells by enrichment: a comparison to standard prostate-specific antigen reverse transcriptase polymerase chain reaction and its clinical relevance in prostate cancer. Urol Oncol 25(3):214–220

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Li WC, Hellem MR, Rostad K, Popa M, McCormack E, Oyan AM, Kalland KH, Ke XS (2013) MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells. Int J Cancer 133(3):544–555

    Article  CAS  PubMed  Google Scholar 

  • Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2:162

    Article  PubMed  Google Scholar 

  • Roca H, Varsos ZS, Mizutani K, Pienta KJ (2008) CCL2, survivin and autophagy: new links with implications in human cancer. Autophagy 4(7):969–971

    CAS  PubMed  Google Scholar 

  • Rodenhiser DI (2009) Epigenetic contributions to cancer metastasis. Clin Exp Metastasis 26(1):5–18

    Article  CAS  PubMed  Google Scholar 

  • Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664

    Article  CAS  PubMed  Google Scholar 

  • Ross JS, Kallakury BV, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P et al (2004) Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin Cancer Res 10:2466–2472

    Article  CAS  PubMed  Google Scholar 

  • Roudier MP, True LD, Higano CS et al (2003) Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum Pathol 34:646–653

    Article  PubMed  Google Scholar 

  • Roudier MP, Morrissey C, True LD, Higano CS, Vessella RL et al (2008) Histopathological assessment of prostate cancer bone osteoblastic metastases. J Urol 180(3):1154–1160

    Article  PubMed  Google Scholar 

  • Shamdas GJ, Ahmann FR, Matzner MB, Ritchie JM (1993) Leukoerythroblastic anemia in metastatic prostate cancer. Clinical and prognostic significance in patients with hormone-refractory disease. Cancer 71(11):3594–3600

    Article  CAS  PubMed  Google Scholar 

  • Shi MF, Jiao J, Lu WG, Ye F, Ma D, Dong QG et al (2010) Identification of cancer stem cell-like cells from human epithelial ovarian carcinoma cell line. Cell Mol Life Sci 67:3915–3925

    Article  CAS  PubMed  Google Scholar 

  • Shiozawa Y, Havens AM, Jung Y, Ziegler AM, Pedersen EA et al (2008a) Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105(2):370–380

    Article  CAS  PubMed  Google Scholar 

  • Shiozawa Y, Havens AM, Pienta KJ, Taichman RS (2008b) The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 22(5):941–950

    Article  CAS  PubMed  Google Scholar 

  • Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121(4):1298–1312

    Article  CAS  PubMed  Google Scholar 

  • Sottnik JL, Daignault-Newton S, Zhang X, Morrissey C, Hussain MH, Keller ET, Hall CL (2013) Integrin alpha2beta 1 (α 2β 1) promotes prostate cancer skeletal metastasis. Clin Exp Metastasis 30(5):569–578

    Article  CAS  PubMed  Google Scholar 

  • Spivak JL (1994) Cancer-related anemia: its causes and characteristics. Semin Oncol 21(2 Suppl 3):3–8

    CAS  PubMed  Google Scholar 

  • Sturge J, Caley MP, Waxman J (2011) Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat Rev Clin Oncol 8(6):357–368. doi:10.1038/nrclinonc.2011.67. Epub 2011 May 10

    CAS  PubMed  Google Scholar 

  • Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM et al (2003) Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89(3):462–473

    Article  CAS  PubMed  Google Scholar 

  • Sun YX, Schneider A, Jung Y, Wang J, Dai J et al (2005) Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20(2):318–329

    Article  CAS  PubMed  Google Scholar 

  • Sun YX, Fang M, Wang J, Cooper CR, Pienta KJ et al (2007) Expression and activation of alpha v beta 3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate 67(1):61–73

    Article  CAS  PubMed  Google Scholar 

  • Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639

    Article  CAS  PubMed  Google Scholar 

  • Tang DG, Patrawala L, Calhoun T, Bhatia B, Choy G, Schneider-Broussard R et al (2007) Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 46:1–14

    Article  CAS  PubMed  Google Scholar 

  • Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Théodore C, James ND, Turesson I, Rosenthal MA, Eisenbergee MA (2004) TAX 327 investigators. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351(15):1502–1512

    Article  CAS  PubMed  Google Scholar 

  • Townson JL, Chambers AF (2006) Dormancy of solitary metastatic cells. Cell Cycle 5(16):1744–1750

    Article  CAS  PubMed  Google Scholar 

  • Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D et al (2002) Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 157:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzman-Ramirez N et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70:5163–5173

    Article  PubMed  Google Scholar 

  • Vashisht S, Bagler G (2012) An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis. PLoS One 7(11):e49401

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Shiozawa Y, Wang Y, Jung Y, Pienta KJ et al (2008) The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 283(7):4283–4894

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV et al (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Fan L, Wei J, Weng Y, Zhou L, Shi Y, Zhou W, Ma D, Wang C (2012) Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of E-cadherin and promoting the invasiveness of prostate cancer cells. PLoS One 7(12):e46888. Epub 2012 Dec 5

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lee SO, Xia S, Jiang Q, Luo J, Li L, Yeh S, Chang C (2013) Endothelial cells enhance prostate cancer metastasis via IL-6->Androgen Receptor->TGF-β->MMP-9 signals. Mol Cancer Ther 12(6):1026–1037

    Article  CAS  PubMed  Google Scholar 

  • Yates C (2011) Prostate tumor cell plasticity: a consequence of the microenvironment. Adv Exp Med Biol 720:81–90

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28(1–2):15–33

    Article  PubMed  Google Scholar 

  • Yin T, Li L (2006) The stem cell niches in bone. J Clin Invest 116(5):1195–1201

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Yao Z, Jiang Y, Keller ET (2012) Prostate cancer stem cell biology. Minerva Urol Nefrol 64(1):19–33

    CAS  PubMed  Google Scholar 

  • Zetter BR (1990) The cellular basis of site-specific tumor metastasis. N Engl J Med 322(9):605–612

    Article  CAS  PubMed  Google Scholar 

  • Zhang HL, Qin XJ, Cao DL, Zhu Y, Yao XD, Zhang SL, Dai B, Ye DW (2013) An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions. Asian J Androl 15(2):231–235. Epub 2013 Feb 4

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Wu XY, Ling XH, Lin ZY, Fu X, Deng YH, He HC, Zhong W (2013) Analysis of genetic aberrations on chromosomal region 8q21-24 identifies E2F5 as an oncogene with copy number gain in prostate cancer. Med Oncol 30(1):465

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Decker KF, Zhou T, Chen J, Qi Z, Jacobs K, Weilbaecher KN, Corey E, Long F, Jia L (2013) Role of WNT7B-induced non-canonical pathway in advanced prostate cancer. Mol Cancer Res 11(5):482–493

    Article  CAS  PubMed  Google Scholar 

  • Zhu KC, Lu JJ, Xu XL, Sun JM (2013) MicroRNAs in androgen-dependent PCa. Front Biosci 18:748–755

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Staibano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Staibano, S. (2013). Metastatic Dissemination. In: Staibano, S. (eds) Prostate Cancer: Shifting from Morphology to Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7149-9_6

Download citation

Publish with us

Policies and ethics