Skip to main content

“Synthetic Lethality”: Molecular Co-targeting to Restore the DNA Repair Mechanisms in Prostate Cancer Cells

  • Chapter
  • First Online:
  • 1152 Accesses

Abstract

Resistance to anticancer radiation treatment has a strong negative impact upon morbidity and mortality related to prostate cancer (Liu et al., Radiother Oncol 88(2):258–268, 2008).

This justifies the great interest in the advancing efforts toward the design of new molecularly-targeted agents which could improve the therapeutic ratio for aggressive prostate cancers via tumor radio-sensitization (Fan et al., Cancer Res 64(23):8526–8533, 2004).

Tumor progression of prostate cancer is associated, as in most of human malignancies, with the sequential loss of function of genes that normally protect against DNA damage.

Malignant prostate cells respond to both endogenous and exogenous DNA damage through complex signaling responses. Due to a specific genetic background, or in an acquired manner during tumor progression, PC cell clones show defect in either DNA single-strand break (SSB) and/or double-strand break (DSB) repair, and/or base damage repair (Stewart et al., Biochem Pharmacol 81(2):203–210, 2011), DSBs are the principal responsible for cell killing due to ionizing radiation (Ward 1988).

A defective DNA double-strand break repair increases genetic instability of PC cells, could be considered as part of their “mutator” phenotype (Tyson et al., Prostate 67:1601–1613, 2007).

During the last decades, it has emerged the concept of “synthetic lethality” (Chalmers et al., Semin Radiat Oncol 20(4):274–281, 2010).

This concept derives from the observation that the use of a single inhibitor of a DNA repair enzyme leads to the selective killing of tumor cells, bearing a second DNA repair defect (Bryant et al., Nature 434(7035):913–917, 2005; Jones and Plummer, Br J Radiol 81(Spec No 1):S2–S5, 2008; Fong et al., N Engl J Med 361:123–134, 2009).

To this end, PARP inhibitors are the well-known class of drugs that have recently been proposed to reach synthetic lethality in DNA repair-defective, radio-resistant prostate tumors.

This chapter aims to provide a framework for understanding the recent therapeutic trends designed to overcome radioresistance in prostate cancer via synthetic lethality, we review what it is actually known about the structures and functions of the members of the PARP family of enzymes, outlining a series of open questions that should be addressed in the short time to better guide the development (and the safe clinical use) of PARP inhibitors as new anticancer agents for prostate cancer (Cybulski et al., Cancer Res 64:1215–1219, 2004; Stewart et al., Biochem Pharmacol 81(2):203–210, 2011).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert JM, Cao C, Kim KW et al (2007) Inhibition of poly(ADPRibose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res 13:3033–3042

    CAS  PubMed  Google Scholar 

  • Ali M, Telfer BA, McCrudden C et al (2009) Vasoactivity of AG014699, a clinically active small molecule inhibitor of poly(ADP-ribose) polymerase: a contributory factor to chemopotentiation in vivo? Clin Cancer Res 15:6106–6112

    CAS  PubMed  Google Scholar 

  • Andrabi SA et al (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci USA 103:18308–18313

    CAS  PubMed  Google Scholar 

  • Antonarakis ES, Armstrong AJ (2011) Emerging therapeutic approaches in the management of metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 14(3):206–218, Review

    CAS  PubMed  Google Scholar 

  • Ashworth A (2008) Drug resistance caused by reversion mutation. Cancer Res 68:10021–10023

    CAS  PubMed  Google Scholar 

  • Barreto-Andrade JC, Efimova EV, Mauceri HJ, Beckett MA, Sutton HG, Darga TE, Vokes EE, Posner MC, Kron SJ, Weichselbaum RR (2011) Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiation. Mol Cancer Ther 10(7):1185–1193

    CAS  PubMed  Google Scholar 

  • Berger SJ, Sudar DC, Berger NA (1986) Metabolic consequences of DNA damage: DNA damage induces alterations in glucose metabolism by activation of poly (ADP-ribose) polymerase. Biochem Biophys Res Commun 134:227–232

    CAS  PubMed  Google Scholar 

  • Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511(2):145–178

    CAS  PubMed  Google Scholar 

  • Bertrand P, Saintigny Y et al (2004) p53’s double life: transactivation-independent repression of homologous recombination. Trends Genet 20:235–243

    CAS  PubMed  Google Scholar 

  • Bill-Axelson A, Holmberg L, Ruutu M, Haggman M, Andersson SO, Bratell S et al (2005) Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 352:1977–1984

    CAS  PubMed  Google Scholar 

  • Bindra RS, Glazer PM (2005) Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res 569:75–85

    CAS  PubMed  Google Scholar 

  • Boehler C et al (2011) Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc Natl Acad Sci U S A 108:2783–2788

    CAS  PubMed  Google Scholar 

  • Bristow RG, Hill P (1998) Molecular and cellular basis of radiotherapy. In: Tannock IF, Hill RP (eds) The basic science of oncology. McGraw-Hill, Toronto, pp 295–321

    Google Scholar 

  • Bristow RG, Ozcelik H, Jalali F, Chan N, Vesprini D (2007) Homologous recombination and prostate cancer: a model for novel DNA repair targets and therapies. Radiother Oncol 83:220–230

    CAS  PubMed  Google Scholar 

  • Bromfield GP, Meng A, Warde P, Bristow RG (2003) Cell death in irradiated prostate epithelial cells: role of apoptotic and clonogenic cell kill. Prostate Cancer Prostatic Dis 6:73–85

    CAS  PubMed  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917

    CAS  PubMed  Google Scholar 

  • Calabrese CR et al (2003) Identification of potent non-toxic poly(ADPribose) polymerase-1 (PARP-1) inhibitors: chemopotentiation and pharmacological studies. Clin Cancer Res 9:2711–2718

    CAS  PubMed  Google Scholar 

  • Calabrese CR, Almassy R, Barton S et al (2004a) Anticancer chemosensitization and radiosensitization by the novel poly(ADPribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96:56–67

    CAS  PubMed  Google Scholar 

  • Calabrese CR et al (2004b) Preclinical evaluation of a novel poly(ADPribose) polymerase-1 (PARP-1) inhibitor, AG14361, with significant anticancer chemo- and radio-sensitization activity. J Natl Cancer Inst 96:56–67

    CAS  PubMed  Google Scholar 

  • Carnell DM, Smith RE, Daley FM, Saunders MI, Bentzen SM, Hoskin PJ (2006) An immunohistochemical assessment of hypoxia in prostate carcinoma using pimonidazole: implications for radioresistance. Int J Radiat Oncol Biol Phys 65:91–99

    CAS  PubMed  Google Scholar 

  • Carson DA, Carrera CJ, Wasson DB, Yamanaka H (1988) Programmed cell death and adenine deoxynucleotide metabolism in human lymphocytes. Adv Enzyme Regul 27:395–404

    CAS  PubMed  Google Scholar 

  • Chalmers AJ, Lakshman M, Chan N, Bristow RG (2010) Poly(ADP-ribose) polymerase inhibition as a model for synthetic lethality in developing radiation oncology targets. Semin Radiat Oncol 20(4):274–281

    PubMed  Google Scholar 

  • Chan N, Milosevic M, Bristow RG (2007) Tumor hypoxia, DNA repair and prostate cancer progression: new targets and new therapies. Future Oncol 3:329–341

    CAS  PubMed  Google Scholar 

  • Choudhury A, Cuddihy A, Bristow RG (2006) Radiation and new molecular agents part I: targeting ATM-ATR checkpoints, DNA repair, and the proteasome. Semin Radiat Oncol 16:51–58

    PubMed  Google Scholar 

  • Cohen-Armon M et al (2004) Long-term memory requires polyADP-ribosylation. Science 304:1820–1822

    Google Scholar 

  • Collis SJ, Sangar VK, Tighe A et al (2002) Development of a novel rapid assay to assess the fidelity of DNA double-strand-break repair in human tumour cells. Nucleic Acids Res 30:E1

    CAS  PubMed  Google Scholar 

  • Collis SJ, DeWeese TL et al (2005) The life and death of DNA-PK. Oncogene 24:949–961

    CAS  PubMed  Google Scholar 

  • Curtin NJ (2005) PARP inhibitors for cancer therapy. Expert Rev Mol Med 7:1–20. Together with reference 15, excellent reviews describing the therapeutic promise of PARP Identification of a PAR-binding motif that mediates selective interaction between PAR and protein partners. inhibitors in cancer treatment or in inflammatory diseases

    Google Scholar 

  • Curtin NJ (2012) Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors. Drug Discov Today Dis Mod Target DNA Repair 9(2):e51–e58

    CAS  Google Scholar 

  • Cybulski C, Gorski B, Debniak T et al (2004) NBS1 is a prostate cancer susceptibility gene. Cancer Res 64:1215–1219

    CAS  PubMed  Google Scholar 

  • D’Amours D, Desnoyers S, D’Silva I et al (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342:249–268

    PubMed  Google Scholar 

  • Dantzer F, de la Rubia G, Menissier-De Murcia J et al (2000) Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1. Biochemistry 39:7559–7569

    CAS  PubMed  Google Scholar 

  • David KK, Andrabi SA, Dawson TM, Dawson VL (2009) Parthanatos, a messenger of death. Front Biosci 14:1116–1128

    CAS  Google Scholar 

  • de Murcia G, Ménissier de Murcia J (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19:172–176

    PubMed  Google Scholar 

  • Delaney CA et al (2000) Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly (adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res 6:2860–2867

    CAS  PubMed  Google Scholar 

  • Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ et al (2007) ABT-888, an orally active poly (ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 13:2728–2737

    CAS  PubMed  Google Scholar 

  • Dong JT (2006) Prevalent mutations in prostate cancer. J Cell Biochem 97:433–447

    CAS  PubMed  Google Scholar 

  • Dungey FA, Loser DA, Chalmers AJ (2008) Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-ribose) polymerase: mechanisms and Therapeutic potential. Int J Radiat Oncol Biol Phys 72:1188–1197

    CAS  PubMed  Google Scholar 

  • Edwards SL et al (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451:1111–1115

    CAS  PubMed  Google Scholar 

  • Efimova EV, Mauceri HJ, Golden DW, Labay E, Bindokas VP, Darga TE et al (2010) Poly(ADP-ribose) polymerase inhibitor induces accelerated senescence in irradiated breast cancer cells and tumors. Cancer Res 70:6277–6282

    CAS  PubMed  Google Scholar 

  • Elliott B, Jasin M (2002) Double-strand breaks and translocations in cancer. Cell Mol Life Sci 59:373–385

    CAS  PubMed  Google Scholar 

  • Erkko H, Xia B, Nikkila J et al (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319

    CAS  PubMed  Google Scholar 

  • Escargueil AE, Soares DG, Salvador M, Larsen AK, Henriques JA (2008) What histone code for DNA repair? Mutat Res 658(3):259–270

    CAS  PubMed  Google Scholar 

  • Esgueva R, Park K, Kim R, Kitabayashi N, Barbieri CE, Dorsey PJ Jr, Abraham C, Banerjee S, Leung RA, Tewari AK, Terry S, Shevchuk MM, Rickman DS, Rubin MA, Weill Cornell Medical College (2012) Next-generation prostate cancer biobanking: toward a processing protocol amenable for the International Cancer Genome Consortium. Diagn Mol Pathol 21(2):61–68

    CAS  PubMed  Google Scholar 

  • Fan R, Kumaravel TS, Jalali F, Marrano P, Squire JA, Bristow RG (2004) Defective DNA strand break repair after DNA damage in prostate cancer cells: implications for genetic instability and prostate cancer progression. Cancer Res 64(23):8526–8533

    CAS  PubMed  Google Scholar 

  • Fang Y et al (2006) BubR1 is involved in regulation of DNA damage responses. Oncogene 25:3598–3605. doi:10.1038/sj.onc.1209392

    CAS  PubMed  Google Scholar 

  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    CAS  PubMed  Google Scholar 

  • Farzaneh F, Zalin R, Brill D, Shall S (1982) DNA strand breaks and ADP-ribosyl transferase activation during cell differentiation. Nature 300:362–366

    CAS  PubMed  Google Scholar 

  • Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    CAS  PubMed  Google Scholar 

  • Giner H et al (1992) Overproduction and large-scale purification of the human poly(ADP-ribose) polymerase using a baculovirus expression system. Gene 114:279–283

    CAS  PubMed  Google Scholar 

  • Goldberg S, Visochek L, Giladi E, Gozes I, Cohen-Armon M (2009) PolyADP-ribosylation is required for long-term memory formation in mammals. J Neurochem 111:72–79

    CAS  PubMed  Google Scholar 

  • Grube K et al (1991) Direct stimulation of poly(ADP-ribose) polymerase in permeabilised cells by double-stranded DNA oligomers. Anal Biochem 193:236–239

    CAS  PubMed  Google Scholar 

  • Guirouilh-Barbat J, Huck S et al (2004) Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol Cell 14:611–623

    CAS  PubMed  Google Scholar 

  • Hakame A et al (2008) The expanding field of poly(ADP-ribosyl)ation reactions. EMBO Rep 9:1094–1100

    Google Scholar 

  • Hansen K, Kelly M (2000) Review of mammalian DNA repair and translational implications. J Pharmacol Exp Ther 295(1):1–9

    CAS  PubMed  Google Scholar 

  • Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:360–374

    Google Scholar 

  • Horsburgh S, Matthew A, Bristow RG, Trachtenberg J (2005) Male BRCA1 and BRCA2 mutation carriers: a pilot study investigating medical characteristics of patients participating in a prostate cancer prevention clinic. Prostate 65:124–129

    PubMed  Google Scholar 

  • Horsman MR (1995) Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours. A review. Acta Oncol 34:571–587

    CAS  PubMed  Google Scholar 

  • Horton JK, Wilson SH (2007) Hypersensitivity phenotypes associated with genetic and synthetic inhibitor-induced base excision repair deficiency. DNA Repair (Amst) 6:530–543

    CAS  Google Scholar 

  • Huang Q, Shen HM (2009) To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy 5:273–276

    CAS  PubMed  Google Scholar 

  • Huang Q, Wu YT, Tan HL, Ong CN, Shen HM (2009) A novel function of poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ 16:264–277

    CAS  PubMed  Google Scholar 

  • Johnstone AP, Williams GT (1982) Role of DNA breaks and ADP-ribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes. Nature 300:368–370

    CAS  PubMed  Google Scholar 

  • Jones C, Plummer ER (2008) PARP inhibitors and cancer therapy - early results and potential applications. Br J Radiol 81(Spec No 1):S2–S5

    CAS  PubMed  Google Scholar 

  • Ju BG et al (2004) Activating the PARP-1 sensor component of the groucho–TLE1 corepressor complex mediates a CaMKinase IIδ-dependent neurogenic gene activation pathway. Cell 119:815–829

    CAS  PubMed  Google Scholar 

  • Juarez-Salinas H, Sims JL, Jacobson MK (1979) Poly(ADP-ribose) levels in carcinogen-treated cells. Nature 282:740–741

    CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    CAS  PubMed  Google Scholar 

  • Kickhoefer VA, Siva AC, Kedersha NL, Inman EM, Ruland C, Streuli M, Rome LH (1999) The 193-kD vault protein, VPARP, is a novel poly(ADP-ribose) polymerase. J Cell Biol 146(5):917–928

    CAS  PubMed  Google Scholar 

  • Konishi Y et al (1986) Possible model of liver carcinogenesis using inhibitors of NAD + ADP ribosyl transferase in rats. Toxicol Pathol 14:483–488

    CAS  PubMed  Google Scholar 

  • Levy-Lahad E, Friedman E (2007) Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer 96:11–15

    CAS  PubMed  Google Scholar 

  • Liu SK, Coackley C, Krause M, Jalali F, Chan N, Bristow RG (2008) A novel poly(ADP-ribose) polymerase inhibitor, ABT-888, radiosensitizes malignant human cell lines under hypoxia. Radiother Oncol 88(2):258–268

    CAS  PubMed  Google Scholar 

  • Ljungman M (2009) Targeting the DNA damage response in cancer. Chem Rev 109:2929–2950

    CAS  PubMed  Google Scholar 

  • Lleonart ME, Artero-Castro A, Kondoh H (2009) Senescence induction; a possible cancer therapy. Mol Cancer 8:3

    PubMed  Google Scholar 

  • Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci USA 100:776–781

    CAS  PubMed  Google Scholar 

  • Martin-Oliva D, Aguilar-Quesada R, O’Valle F et al (2006) Inhibition of poly(ADP-ribose) polymerase modulates tumor-related gene expression, including hypoxia-inducible factor-1 activation, during skin carcinogenesis. Cancer Res 66:5744–5756

    CAS  PubMed  Google Scholar 

  • Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS et al (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 1:315–322

    CAS  PubMed  Google Scholar 

  • Meng AX, Jalalia F, Cuddihya A, Chan N, Bindrab RS, Glazerb PM, Robert G (2005) Bristow Hypoxia down-regulates DNA double strand break repair gene expression in prostate cancer cells. Radiother Oncol 76:168–176

    CAS  PubMed  Google Scholar 

  • Menissier de Murcia J et al (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94:7303–7307

    CAS  Google Scholar 

  • Midorikawa R, Takei Y, Hirokawa N (2006) KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell 125:371–383

    CAS  PubMed  Google Scholar 

  • Miknyoczki SJ et al (2003) Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol Cancer Ther 2:371–382

    CAS  PubMed  Google Scholar 

  • Morrison C et al (1997) Genetic interaction between PARP and DNA-PK in V(D)J. Recombination and tumorigenesis. Nat Genet 17:479–482

    CAS  PubMed  Google Scholar 

  • Munoz-Gamez JA et al (2009) PARP-1 is involved in autophagy induced by DNA damage. Autophagy 5:61–74

    CAS  PubMed  Google Scholar 

  • Nichol AM, Warde P, Bristow RG (2005) Optimal treatment of intermediate-risk prostate carcinoma with radiotherapy: clinical and translational issues. Cancer 104:891–905

    PubMed  Google Scholar 

  • Noel G, Godon C, Fernet M et al (2006) Radiosensitization by the poly(ADPribose) polymerase inhibitor 4-amino-1,8-naphthalimide is specific of the S phase of the cell cycle and involves arrest of DNA synthesis. Mol Cancer Ther 5:564–574

    CAS  PubMed  Google Scholar 

  • Ogata N, Ueda K, Kagamiyama H, Hayaishi O (1980) ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH-terminal lysine residue as modification sites. J Biol Chem 255:7616–7620

    CAS  PubMed  Google Scholar 

  • Oliver AW et al (2004) Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2. Nucleic Acids Res 32:456–464

    CAS  PubMed  Google Scholar 

  • Overgaard J (2007) Hypoxic radiosensitization: adored and ignored. J Clin Oncol 25:4066–4074

    PubMed  Google Scholar 

  • Pacher P, Szabo C (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 25:235–260

    CAS  PubMed  Google Scholar 

  • Palma JP et al (2009) ABT-888 confers broad in vivo activity in combination with temozolomide in diverse tumours. Clin Cancer Res 15:7277–7290

    CAS  PubMed  Google Scholar 

  • Pfieffer R et al (1999) Quantitative nonisotopic immuno-dot-blot method for the assessment cellular poly(ADP-ribosyl)ation capacity. Anal Biochem 275:118–122

    Google Scholar 

  • Pihan GA, Purohit A, Wallace J, Malhotra R, Liotta L, Doxsey SJ (2001) Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res 61:2212–2219

    CAS  PubMed  Google Scholar 

  • Pleschke JM, Kleczkowska HE, Strohm M, Althaus FR (2000) Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 275:40974–40980

    CAS  PubMed  Google Scholar 

  • Plummer R, Jones C, Middleton M, Wilson R, Evans J, Olsen A et al (2008) Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 14:7917–7923

    CAS  PubMed  Google Scholar 

  • Pollack A, Hanlon A et al (2003) Radiation therapy dose escalation for prostate cancer: a rationale for IMRT. World J Urol 21:200–208

    PubMed  Google Scholar 

  • Powell C, Mikropoulos C, Kaye SB, Nutting CM, Bhide SA, Newbold K et al (2010) Pre-clinical and clinical evaluation of PARP inhibitors as tumor-specific radiosensitizers. Cancer Treat Rev 36:566–575

    CAS  PubMed  Google Scholar 

  • Rajesh M, Mukhopadhyay P, Batkai S et al (2006a) Pharmacological inhibition of poly(ADP-ribose) polymerase inhibits angiogenesis. Biochem Biophys Res Commun 350:352–357

    CAS  PubMed  Google Scholar 

  • Rajesh M, Mukhopadhyay P, Godlewski G et al (2006b) Poly(ADPribose) polymerase inhibition decreases angiogenesis. Biochem Biophys Res Commun 350:1056–1062

    CAS  PubMed  Google Scholar 

  • Riballo E, Kuhne M et al (2004) A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16:715–724

    CAS  PubMed  Google Scholar 

  • Richardson C, Stark JM et al (2004) Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability. Oncogene 23:546–553

    CAS  PubMed  Google Scholar 

  • Rodon J, Iniesta MD, Papadopoulos K (2009) Development of PARP inhibitors in oncology. Expert Opin Investig Drugs 18:31–43

    CAS  PubMed  Google Scholar 

  • Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer Res 63:2705–2715

    CAS  PubMed  Google Scholar 

  • Rothkamm K, Kruger I et al (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715

    CAS  PubMed  Google Scholar 

  • Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301, Review

    CAS  PubMed  Google Scholar 

  • Ruf A, Mennissier de Murcia J, de Murcia G, Schulz GE (1996) Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc Natl Acad Sci USA 93:7481–7485

    CAS  PubMed  Google Scholar 

  • Russell JS, Brady K, Burgan WE et al (2003) Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res 63:7377–7383

    CAS  PubMed  Google Scholar 

  • Sakai W et al (2008) Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451:1116–1120

    CAS  PubMed  Google Scholar 

  • Saleh-Gohari N et al (2005) Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol 25:7158–7169

    CAS  PubMed  Google Scholar 

  • Satoh MS, Poirier GG, Lindahl T (1994) Dual function for poly(ADP-ribose) synthesis in response to DNA strand breakage. Biochemistry 33:7099–7106

    CAS  PubMed  Google Scholar 

  • Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528, Review

    CAS  PubMed  Google Scholar 

  • Schwarze SR et al (2001) Role of cyclin-dependent kinase inhibitors in the growth arrest at senescence in human prostate epithelial and uroepithelial cells. Oncogene 20:8184–8192

    CAS  PubMed  Google Scholar 

  • Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP et al (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128:157–170

    CAS  PubMed  Google Scholar 

  • Slupianek A, Schmutte C, Tombline G et al (2001) BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance. Mol Cell 8:795–806

    CAS  PubMed  Google Scholar 

  • Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S (2006) Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5:1021–1029

    CAS  Google Scholar 

  • Stein GH, Drullinger LF, Soulard A, Dulic V (1999) Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 19:2109–2117

    CAS  PubMed  Google Scholar 

  • Stewart GD, Ross JA, McLaren DB, Parker CC, Habib FK, Riddick AC (2010) The relevance of a hypoxic tumour microenvironment in prostate cancer. BJU Int 105:8–13

    CAS  PubMed  Google Scholar 

  • Stewart GD, Nanda J, Katz E, Bowman KJ, Christie JG, Brown DJ, McLaren DB, Riddick AC, Ross JA, Jones GD, Habib FK (2011) DNA strand breaks and hypoxia response inhibition mediate the radiosensitisation effect of nitric oxide donors on prostate cancer under varying oxygen conditions. Biochem Pharmacol 81(2):203–210

    CAS  PubMed  Google Scholar 

  • Takahashi S et al (1984) Enhancement of DEN initiation of liver carcinogenesis by inhibitors of NAD + ADP ribosyl transferase in rats. Carcinogenesis 5:901–906

    CAS  PubMed  Google Scholar 

  • Tannock IF, Hill RP, Bristow RG, Harrington L (2005) The basic science of oncology. McGraw-Hill Professional, New York

    Google Scholar 

  • Timinszky G et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16:923–929

    CAS  PubMed  Google Scholar 

  • Tong WM et al (2002) Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res 62:6990–6996

    CAS  PubMed  Google Scholar 

  • Tong WM et al (2003) Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53−/− mice. Am J Pathol 162:343–352

    CAS  PubMed  Google Scholar 

  • Trzeciak AR, Nyaga SG, Jaruga P, Lohani A, Dizdaroglu M, Evans MK (2004) Cellular repair of oxidatively induced DNA base lesions is defective in prostate cancer cell lines, PC-3 and DU-145. Carcinogenesis 25:1359–1370

    CAS  PubMed  Google Scholar 

  • Tulin A, Stewart D, Spradling AC (2002) The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev 16:2108–2119

    CAS  PubMed  Google Scholar 

  • Tyson DR, Inokuchi J, Tsunoda T, Lau A, Ornstein DK (2007) Culture requirements of prostatic epithelial cell lines for acinar morphogenesis and lumen formation in vitro: role of extracellular calcium. Prostate 67:1601–1613

    CAS  PubMed  Google Scholar 

  • Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    CAS  PubMed  Google Scholar 

  • Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182

    CAS  PubMed  Google Scholar 

  • Vukovic B, Park PC, Al-Maghrabi J et al (2003) Evidence of multifocality of telomere erosion in high-grade prostatic intraepithelial neoplasia (HPIN) and concurrent carcinoma. Oncogene 22:1978–1987

    CAS  PubMed  Google Scholar 

  • Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 35:95–125

    CAS  PubMed  Google Scholar 

  • Weterings E, van Gent DC (2004) The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair (Amst) 3:1425–1435

    CAS  Google Scholar 

  • Willers H, Dahm-Daphi J et al (2004) Repair of radiation damage to DNA. Br J Cancer 90:1297–1301

    CAS  PubMed  Google Scholar 

  • Wong CS, Hill RP (1998) Experimental radiotherapy. In: Tannock IF, Hill RP (eds) The basic science of oncology, 3rd edn. McGraw-Hill, Toronto, pp 322–349

    Google Scholar 

  • Wouters BG, Weppler SA, Koritzinsky M, Landuyt W, Nuyts S, Theys J, Chiu RK, Lambin P (2002) Hypoxia as a target for combined modality treatments. Eur J Cancer 38:240–257

    CAS  PubMed  Google Scholar 

  • Yuan R, Fan S, Wang JA et al (1999) Coordinate alterations in the expression of BRCA1, BRCA2, p300, and Rad51 in response to genotoxic and other stresses in human prostate cancer cells. Prostate 40:37–49

    CAS  PubMed  Google Scholar 

  • Zelefsky MJ, Chan H, Hunt M, Yamada Y, Shippy AM, Amols H (2006) Longterm outcome of high dose intensity modulated radiation therapy for patients with clinically localized prostate cancer. J Urol 176:1415–1419

    PubMed  Google Scholar 

  • Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18:1272–1282

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Ilardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ilardi, G., Staibano, S. (2013). “Synthetic Lethality”: Molecular Co-targeting to Restore the DNA Repair Mechanisms in Prostate Cancer Cells. In: Staibano, S. (eds) Prostate Cancer: Shifting from Morphology to Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7149-9_18

Download citation

Publish with us

Policies and ethics